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Delayed climate mitigation imposes substantial economic costs
by shifting the burden of adjustment onto future generations. We
quantify these welfare losses within a climate-economy model that
allows us to calculate the deadweight loss (DWL) of underpricing
carbon pollution. We simulate policy delay by constraining initial
mitigation years and comparing resulting welfare outcomes to an
unconstrained baseline. We show analytically that delay raises the
required expected entry carbon price: with interior solutions, the
expected price maximizes utility and is increasing in the deterio-
rated climate state at re-entry. Across scenarios, expected re-entry
prices are higher by roughly 0.4-0.9% per additional year of delay.
The consumption-equivalent DWL even for short delays of 5 to 15
years ranges from 14-32% of first-period consumption, or roughly
$8-19 trillion (2020 USD) in one-time compensation. DWLs rise
steeply but concavely in the length of delay, reflecting catch-up pric-
ing and abatement once the constraint lifts.
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4

Climate economics is, at its core, the economics of delaying optimal choice. Con-5

sequences of delaying climate mitigation are profound and quantifiable, as every6

year without meaningful reductions in greenhouse gas emissions increases their7
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concentration and commits the world to higher temperature and greater climate8

damages. From an economic perspective, these delays are an implicit transfer of9

welfare from future generations to the present, an intertemporal reallocation that10

is driven not by efficiency but political and institutional frictions. Understanding11

the dynamics of this delay and quantifying the resulting deadweight loss (DWL)12

is essential in understanding the true cost of inaction.13

Most climate-economic integrated assessment models (IAMs) seek to identify14

the optimal mitigation path that maximizes intertemporal social welfare under15

a set of assumed parameters. Yet governments rarely follow the paths that16

economists identify as socially optimal. Corporate lobbying (Oreskes and Con-17

way, 2011) and other interest-group politics (Mildenberger, 2020), in part via18

public opinion (Dechezleprêtre et al., 2025; Mildenberger and Tingley, 2019), in-19

stitutional constraints (Bertram et al., 2024), behavioral barriers (Wagner and20

Zeckhauser, 2012), and other political economy considerations (Meckling, Sterner21

and Wagner, 2017; Meckling, 2025) defer action, even when — or perhaps espe-22

cially when — the social planner’s problem is well understood.23

The more explicit the attempt at pricing the negative climate externality, the24

louder are the voices of vested interests lobbying against climate policy. This25

delay in climate action moves the world further off the efficient frontier, which26

does not just lead to greater economic damages as reflected in higher social cost27

of carbon (SCC) calculations (Moore et al., 2024) but measurable DWLs.28

Here we examine these costs explicitly. Building on a carbon asset pricing29

framework (Bauer, Proistosescu andWagner, 2024), which extends the Epstein–Zin30

recursive preference structure of Daniel, Litterman and Wagner (2019), we quan-31

tify DWLs of delaying optimal policy by comparing carbon price paths under32

constrained and unconstrained conditions, analyzing sensitivities of various model33

parameters, including technological progress and learning. In contrast to Daniel,34

Litterman and Wagner (2019), we further show that the optimal expected carbon35

price in a delayed scenario will be higher under standard assumptions than in an36



ECONOMIC DAMAGES OF DELAYED CLIMATE ACTION 3

unconstrained scenario.37

We present simple heuristics about the high and quickly accumulating costs of38

delayed climate action, finding DWLs of delay of between 14-32% of first-period39

consumption, or $8-19 trillion (2020 USD), even for relatively short delays of40

between 5 and 15 years. These numbers are significantly higher than typically41

calculated, using SCC-based measures. Our optimal carbon price in our base case42

here is roughly $200, below, for example, that calculated by Moore et al. (2024)’s43

“synthetic distribution” with a mean SCC of around $280. Meanwhile, Bilal and44

Känzig (2025) calculate an SCC above $1500 and a welfare cost of (only) around45

30%. A key difference to our analysis: we solve for the ‘optimal’ carbon price by46

considering marginal disutility of damages, instead of calculating the SCC, the47

discounted value of the stream of expected future damages.48

I. Socio-economic modeling choices49

To explore how postponing climate policy affects welfare and the socially opti-50

mal carbon price path, we endow a representative agent with recursive Epstein-51

Zin (EZ) preferences and place it within a binomial decision tree where utility52

is maximized at each step. Such preferences allow us to disentangle risk over53

time from risk across states of nature. This distinction follows Epstein and Zin54

(1989, 1991), with a long history in financial economics, and a more recent one55

in modeling the financial implications of climate risks (Ackerman, Stanton and56

Bueno, 2013; Traeger, 2014; Lemoine and Traeger, 2014).57

The representative agent’s preferences follow the recursive Epstein–Zin specifi-58

cation,59

(1) Ut =
(
(1− β)cρt + β

[
Et(Uαt+1)

]ρ/α)1/ρ
,

where β := (1 + δ)−1 > 0 is the one-year discount factor, with δ > 0 denoting60

the pure rate of time preference; ct > 0 is consumption at time t; ρ := 1 − 1/σ,61



where σ > 0 is the elasticity of intertemporal substitution (EIS); and α := 1− γ,62

where γ > 0 is the coefficient of relative risk aversion (RA). The term Et(Uαt+1)63

represents the certainty equivalent of future utility.64

When α = ρ, that is, when risk aversion and intertemporal substitution coin-65

cide, the recursive formulation in Equation (1) collapses to the standard time-66

additive expected-utility form with constant relative risk aversion.67

For the terminal period T , we assume exogenous consumption growth g > 068

and define terminal utility as69

(2) UT =
[ 1− β

1− β(1 + g)ρ
]1/ρ

cT .

This specification cleanly separates two central preference parameters: σ, which70

governs willingness to substitute consumption over time, and γ, which governs71

aversion to risk across uncertain future states.172

II. Optimization73

Following Daniel, Litterman and Wagner (2019) and Bauer, Proistosescu and74

Wagner (2024), we embed the representative agent in a finite-horizon probability75

landscape. Our model has six decision times T0, . . . , T5 (Figure 1). At every76

node (t, s) of the tree, the agent maximizes EZ utility in (1) and chooses a node-77

specific mitigation level mt,s ∈ [0, m̄] with upper mitigation bound m̄, subject to78

climate dynamics, resource constraints, abatement costs, climate damages, and79

the technological feasibility of mitigation. Each choice commits the agent to a80

continuation policy for all downstream nodes in a given branch.81

The climate state evolves according to the impulse response function (IRF) of82

Joos et al. (2013) for atmospheric CO2 concentration C and the TCRE map-83

ping from cumulative emissions to the global mean surface temperature anomaly84

θ (in ◦C above preindustrial), see Eqs. (A2)–(A3) in Appendix A.A1. Our im-85

1See Appendix A.A1 for parameter values used in our main specification.
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Figure 1. : Optimal price paths (unconstrained baseline)

Note: The binomial non-recombining tree shows the optimal node-level shadow-price trajectory on the
stochastic decision tree used in the model. Each node represents a shadow price (in 2020 USD per ton
CO2) at the beginning of the indicated year, conditional on previous realizations of climate and economic
uncertainty.



plementation uses a carbon cycle model with persistent parameters from Joos86

et al. (2013) and uncertain effective TCRE λeff ∼ N (0.52, 0.212). For analytical87

results we employ a stylized finite-dimensional representation that preserves the88

key monotonicity properties.89

Define at node (t, s) the marginal willingness to pay Φt,s(θt,s) to avoid one90

additional ton of CO2 emitted in [Tt, Tt+1). Mitigation has node-specific marginal91

cost κ′t,s(mt,s, Lt,s) = ∂κt,s(mt,s, Lt,s)/∂mt,s.92

At decision time t, let St denote the set of nodes (states) and {πt,s}s∈St the93

probabilities of those nodes, conditional on information at the start of period t.94

For any node-level variable xt,s2, write its cross-node expectation as95

(3) xt := Et [xt,S ] =
∑
s∈St

πt,sxt,s.

We summarize period t by the expected objects Φt := Et[Φt,S ] and κ′t := Et[κ′t,S ]96

when needed (using (3)).97

The climate state at node (t, s) is (Ct,s, θt,s), with Ct,s and θt,s generated by98

Eqs. (A2)–(A3). Period-t expectations are Ct := Et[Ct,S ] and θt := Et[θt,S ]. On99

the cost side, mitigation has node-specific marginal cost κ′t,s(mt,s, Lt,s), where Lt,s100

indexes both exogenous technological progress and endogenous learning-by-doing.101

Past mitigation lowers future costs by shifting down the marginal cost curve.102

III. Carbon price paths under delay103

To test the cost of delay, we impose a zero-mitigation constraint for the first104

decision node and vary the length L of that period by shifting the initial decision105

time between 5, 10, and 15 years: L ∈ {5, 10, 15}. Each constrained run is then106

evaluated against two baseline scenarios, depending on the figure—the optimal107

expected price at the same L, and one common L = 10 baseline. Figure 2 shows108

the resulting optimal carbon price paths in expectation over time. We here find109

2Subscript (t, s) denotes a node-level object; subscript t alone denotes its period-t expectation across
s ∈ St with weights πt,s.
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that the carbon price paths in expectation of each delayed scenario lie above the110

baseline scenario’s levels.3111

If the optimum at time Tt is interior (i.e., m?
t,s ∈ (0, m̄) for all s ∈ St) and112

baseline emissions Et > 0, the first–order condition at each node equates the113

node–specific marginal abatement cost to the node–specific marginal damage:114

(4) τt,s := κ′t,s

(
m?
t,s(θt,s, Lt,s), Lt,s

)
= Φt,s(θt,s), s ∈ St.

where κ′t,s(mt,s, Lt,s) = ∂κt,s/∂mt,s. We summarize the decision period by the115

expected carbon price,116

(5) τt := Et[τt,S ] = Et
[
Φt,S(θt,S)

]
=
∑
s∈St

πt,s Φt,s(θt,s),

which is the probability–weighted average across all nodes at time t. Learn-117

ing–by–doing and exogenous technological progress enter through Lt,s, shifting118

κ′t,s and thereby altering both the node–level prices τt,s and the expected price τt.119

For period-level values, define the expected total mitigation cost and expected120

marginal abatement cost as κt := Et[κt,S ] and κ′t := Et[κ′t,S ]. Note that be-121

cause mt,s is node-specific, κ′t 6= ∂κt/∂m in general. At the node level, however,122

κ′t,s(mt,s, Lt,s) = ∂κt,s(mt,s, Lt,s)/∂mt,s.123

Delaying mitigation creates a deviation from optimal choice. By not allowing for124

mitigation for the first L years the world reaches the first unconstrained decision125

date T1 = L with a worse climate state: higher cumulative emissions, higher126

atmospheric CO2 across persistence reservoirs, and higher temperatures. In that127

state, marginal damages are higher than they would have been without delay, and128

the representative agent’s marginal willingness to pay to avoid one ton of CO2,129

ΦL(θL), is higher than it would have been without delay.130

Worse still, delaying mitigation also means postponing learning-by-doing. Forc-131

3See Figure A1 for other outputs, like emissions and economic damages.



Figure 2. : Optimal CO2-price paths under delayed policy implementation.

Note: Six decision times are used in all runs, but the length of the first decision period is varied between
5, 10, and 15 years, while all subsequent time steps remain fixed. Each delay scenario (5 yr, 10 yr, 15 yr)
is solved as an independent run. We also show a canonical baseline scenario with a decision time at the
10-year step. The resulting carbon price paths show that postponing mitigation leads to a sharp upward
adjustment in the first active period, followed by convergence toward the optimal no-delay trajectory.

ing mt = 0 in the early window removes that source of endogenous cost decline.132

(See Proposition A.1.) As a result, when the world begins to act optimally at133

T1 = L, it faces both a more fragile climate state and a less mature—more134

expensive—abatement cost curve. The representative agent’s optimal response135

is therefore to start the policy period with a higher expected carbon price than136

in the no-delay baseline, and to immediately mitigate more aggressively. This137

jump in the required expected entry carbon price is structural: it comes from138

state dependence in climate damages and from foregone technological progress,139

not from a particular calibration of parameters.140

Formally, under standard convexity of abatement costs and monotonicity of141

damages in the climate state (Appendix A.A1), the optimal expected carbon142

price at T1 = L in the delayed scenario, τdelayL , is weakly higher than the optimal143

expected carbon price at the same time in the no-delay baseline, τbaseL , with144

strict inequality whenever the no-mitigation constraint was binding. The state-145

dependence logic is formalized in Proposition A.1 (Appendix A.A1).146
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Table 1—: Delay-to-price elasticity at re-entry

L (years) Year τbaseL τdelayL ∆ log(τ) η(L) (%/yr)
5 2025 $182.97 $191.35 0.044810 0.896
10 2030 $181.55 $194.83 0.070607 0.706
15 2035 $184.49 $196.71 0.064150 0.428

Average 0.677

We summarize the expected price impact with the delay-to-price elasticity147

(6) η(L) := ∂ log τdelayL

∂L
,

which is the percent increase in the required expected entry carbon price at the148

first unconstrained decision time per additional year of forced delay. Because149

our model is solved at discrete delay lengths only, we estimate η(L) by finite150

differences using L ∈ {5, 10, 15}, i.e., η(L) ≈ (log τdelayL − log τbaseL )/L.151

Table 1 reports the resulting elasticities. For a 5-year delay, the required re-152

entry expected price rises from $182.97 to $191.35, which corresponds to about an153

0.896% higher expected price per year of delay. For 10 and 15 years of delay, the154

effect remains positive but declines to 0.706% and 0.428% per year, respectively.155

Averaging across the three scenarios yields an elasticity of about 0.677% per year.156

A simple log–linear fit of the delayed expected prices on the delay length gives a157

smaller, global elasticity of 0.276% per year (SE: 0.000487), with a 95% confidence158

interval of [0.181%, 0.372%]. This confirms Proposition A.1: In every scenario159

we consider, a binding delay raises the required expected entry carbon price.160

The elasticity is declining in L, which implies a concave delay-price relationship:161

early years of inaction are disproportionally costly, as they push the system into162

a higher-damage (and technically, low-learning) state, while additional years of163

delay add to the carbon debt at a diminishing marginal rate.164

As a robustness check, we also estimate a pooled delay-to-price elasticity across165

the three scenarios by regressing the delayed re-entry expected price on the length166



of the delay,167

(7) log(τdelayL ) = α+ ηOLSL+ εL,

which yields ̂log(τdelayL ) = 5.2417+0.0028L, with R2 = 0.97. The slope coefficient168

ηOLS = 0.0028 implies that, on average across the 5-15 year range, each extra169

year of delay raises the required expected entry carbon price by about 0.276%170

per year. The 95% confidence interval corresponds to [0.181%, 0.372%] per year.171

IV. Estimating deadweight losses (DWLs) of delay172

To quantify the societal cost of delayed action, we compute the DWL associated173

with postponing mitigation. Specifically, we determine the additional consump-174

tion in the first period required to restore lifetime utility of the representative175

agent to the level of the unconstrained (baseline) case. Denoting baseline utility176

at the root as U∗0 , first-period consumption in the delayed scenario as cD0 , and the177

expected (certainty-equivalent) future utility as CED1 := (E0[Uα1 ])1/α, we define178

the consumption-equivalent DWL φ ≥ 0 implicitly by179

(8) U∗0 =
(
(1− β)

(
(1 + φ)cD0

)ρ + β(CED1 )ρ
)1/ρ

Solving for φ yields4180

(9) φ =
[

(U∗0 )ρ − β(CED1 )ρ

(1− β)(cD0 )ρ

]1/ρ

− 1, (ρ 6= 0).

Applying this metric, we find that the DWL of delayed mitigation rises with the181

duration of inaction (Table 2). In our main specification, enforced bans on mitiga-182

tion force higher entry expected carbon prices at T1 = L, which we capture with183

the delay-to-price elasticity η(L); that higher required expected starting price184

translates directly into a larger consumption-equivalent DWL φ. In our main185

4In the case that ρ = 0, we apply the Cobb-Douglas limit as derived in Appendix A.A2
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specification, banning mitigation for five years, ten years, and fifteen years pro-186

duces a DWL of delay of roughly 14%, 22%, and 32% of first-period consumption,187

respectively. In monetary terms, these correspond to about $8.3tn, $12.8tn, and188

$18.8tn in one-time global compensation at the start of the policy window. Each189

additional year of delay raises the DWL by about $1.05 trillion per year over the190

5–15 year range, i.e., roughly 1.8 percentage points of first-period consumption191

per year. A simple log-log fit implies φ(L) ∝ L0.73, indicating sub-linear scaling192

and modestly declining marginal losses as the delay lengthens.193

These DWLs increase with delay length, but not linearly. Longer bans on194

mitigation give the representative agent at the next decision time a more polluted195

atmosphere and therefore require a higher expected starting carbon price at T1 =196

L under our standard assumptions. The agent then responds by catching up:197

once mitigation is finally allowed, the optimal policy sharply raises the expected198

carbon price at T1 = L relative to the no-delay baseline and moves immediately199

to very aggressive abatement. This catch-up behavior is economically painful in200

the short run, which shows up in φ(L), but it stabilizes the long run by limiting201

further deterioration of the climate-economy state. Numerically, in our baseline202

calibration φ(L) rises quickly between 0 and 10 years of delay and continues to203

rise thereafter, though at a slower rate (Table 2). In our benchmark runs, then,204

the exogenously induced delay has a clearly measurable cost: for the 5-15 year205

range we study, every additional year without mitigation forces the social planner206

to start the policy period with an expected carbon price between about 0.4 and207

0.9 percent higher than it otherwise would have been, with an average of 0.7208

percent. The regression-based estimate is smaller because it smooths across the209

three scenarios, but it preserves the sign and the basic message: delay makes the210

first feasible expected carbon price higher.211



Table 2—: Social cost of delaying climate action under alternative baselines

First
period length
L (years)

Canonical baseline Aligned baseline Difference
(p.p.)

DWL
(%)

DWL
(2020 USD tn)

DWL
(%)

DWL
(2020 USD tn)

5 14.24 8.2 13.00 7.5 −1.24
10 21.82 12.6 21.87 12.7 +0.05
15 32.21 18.7 33.10 19.1 +0.89

Note: Deadweight loss (DWL) represents the consumption-equivalent compensation required for lifetime
utility in the delayed-mitigation scenario to equal that in the corresponding baseline. The canonical
baseline fixes the first decision period at 10 years across all runs to enable direct DWL comparisons. The
aligned baseline matches each delay scenario to an unconstrained run with the same decision timeline
(e.g., 5-year delay vs. 5-year baseline). The minor difference for the 10-year scenario reflects stochastic
draws in the model’s Monte Carlo simulations. Dollar values are in trillions of 2020 USD.

V. Evaluating parameter importance212

Understanding why delay is so costly requires unpacking which structural prim-213

itives make the carbon-debt difference τdelayL −τbaseL and its elasticity as per Equa-214

tion (6) large, and therefore drive the DWL penalty φ. Figure 3 offers a first look,215

plotting the DWL of delay against four structural drivers: EIS, PRTP, exogenous216

technological change, and endogenous learning. Lines show within-delay OLS fits217

of the expected DWL on the parameter value. The fitted Gaussian curves show218

the distribution of φ(L) for the different delay lengths given our parameter space.219

The central result is that impatience dominates. When societies heavily discount220

the future, no amount of technological progress or learning can offset the welfare221

lost from postponing mitigation.222

Parameter sensitivities in Table 3 show which economic mechanisms drive the223

DWL of delaying climate action in a multivariate regression, i.e., they show partial224

OLS effects within our parameter grid. We estimate these effects over a broad225

random draw of the model’s structural parameters, each sampled independently226

from its prior probability distribution. This approach ensures that coefficients227

capture partial effects across the full range of plausible economic and technological228

states. Each parameter thus maps a structural assumption into an economic229
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Figure 3. : Variance decomposition of deadweight losses (DWLs) by structural
parameters.

Note: The figure truncates the vertical axis at 30% to improve visibility. This range contains approxi-
mately 95% of observations.



intuition about risk, time, and technology.230

Higher risk aversion (RA) raises the shadow value of insurance against uncertain231

climate damages. A one-point increase in γ raises the DWL by roughly 0.25232

percentage points, or about $147 billion. This result is highly significant. Agents233

who are risk-averse value early mitigation more strongly as protection against234

catastrophic tail outcomes. Nonetheless, RA across states of nature matters less235

than aversion across time (see EIS): what dominates is not which climate future236

occurs but how long society waits to act.237

The elasticity of intertemporal substitution (EIS) is the single strongest behav-238

ioral determinant of delay costs. A 0.1 increase in σ (within the sampled range of239

0.55-1.1) raises the DWL by about 5%, or $3 trillion (p < 0.001). In the uncon-240

strained baseline, such a society is willing to sacrifice some near-term consumption241

(via costly early mitigation) in exchange for much lower climate damages later. A242

binding delay prevents that optimal intertemporal trade, so the DWL φ(L) from243

delay is larger when σ is high.244

With a negative coefficient significant at the 10% level, faster exogenous tech-245

nological change cushions the economy against delay. A one percentage-point246

increase in the exogenous rate of technological change reduces DWL by roughly247

0.7%, or about $440 billion. Independent innovation lowers future abatement248

costs and partially offsets delay. When technology improves independently of249

early action, postponement hurts less because future abatement is cheaper. Con-250

versely, technological stagnation amplifies the cost of delay.251

Endogenous technological learning has a positive coefficient that is significant252

at the 10% level with similar magnitude to exogenous change. A one percentage-253

point increase in learning intensity raises DWL by about 0.6%, or $380 billion.254

The mechanism is path dependence: delaying mitigation slows learning-by-doing,255

delaying cost reductions and locking in higher future abatement costs. Inaction256

today undermines tomorrow’s productivity gains.257

The pure rate of time preference (PRTP, δ) has a large and statistically signif-258
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icant effect. The coefficient implies that raising δ by 1 percentage point lowers259

DWL by roughly 25.6 percentage points, or $ 15.3 trillion. More impatient so-260

cieties (higher δ, lower β) care relatively less about distant future damages. In261

our regressions, this shows up as a lower measured DWL from delay. Conversely,262

patient societies (low δ) view delay as extremely expensive. This confirms that263

how we value time, not technology or static risk, is a first-order driver of the DWL264

variation across scenarios.265

The backstop premium, that is, the long-run cost ceiling for zero-carbon tech-266

nology, is statistically insignificant and economically negligible. A 1% change in267

the backstop price shifts DWL by less than 0.01%, or about $0.4 billion. In the268

model, this parameter adds a surcharge to the marginal cost of over-mitigation,269

that is, for mitigation levels above 100%, corresponding to net carbon removal.270

This captures the real-world cost gap between eliminating emissions and achieving271

net-negative emissions through technologies such as direct air capture. Because272

optimal policy paths in our delay experiments rarely enter the over-mitigation273

regime, the DWL effects of the premium remain small.274

Consumption growth enters negatively: A one percentage-point faster consumption-275

growth rate reduces the DWL by about 0.6%, or $340 billion. Even though it is276

not significant, the sign aligns with the theoretical expectation that faster growth277

decreases the DWL of delay.278

Both delay length indicator variables are positive and highly significant. Ex-279

tending the first decision period from 5 to 10 years raises the DWL by about280

3.5%, or $2.1 trillion; extending to 15 years increases them by roughly 8.5%, or281

$5.1 trillion. The rise is steep but concave, consistent with the model’s adaptive282

catch-up dynamics: once mitigation begins, expected carbon prices jump sharply,283

partially—but never fully—recovering lost welfare.284

Taken together, our analysis shows that the economics of delay is fundamentally285

about time preference and intertemporal trade-offs: Impatience and substitution,286

not technology or risk, explain most of the DWL of inaction, underscoring that287



the true price of delay is paid in lost time.288
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Table 3—: Regression results: determinants of deadweight loss (DWL) and miti-
gation delay outcomes

(1) (2) (3)
Const -0.0457** -10.5381 -6301.7279

(0.0199) (8.3528) (4994.9064)
RA (γ) 0.0046*** 0.2454*** 146.7690***

(0.0002) (0.0847) (50.6514)
EIS (σ) 0.4767*** 49.7372*** 29742.5249***

(0.0057) (2.5267) (1510.9441)
Tech. change (exog.) -1.4735*** -73.5360* -43974.0590*

(0.0935) (38.5723) (23066.0244)
Tech. learning (endo.) 0.8882*** 63.7416* 38117.0615*

(0.0883) (34.3644) (20549.6858)
PRTP (δ) -23.5410*** -2556.3668*** -1528691.37***

(0.2509) (111.3807) (66604.948)
log(Backstop premium) -0.0009 -0.6235 -372.8457

(0.0020) (0.8472) (506.6172)
Cons. growth -3.5662*** -57.4224 -34338.2212

(0.1814) (77.6601) (46440.2569)
Delay 10 0.0469*** 3.4608*** 2069.5203***

(0.0015) (0.3973) (237.5642)
Delay 15 0.1088*** 8.5027*** 5084.5728***

(0.0021) (0.7598) (454.3852)
R2 0.7639 0.2034 0.2034
Adj. R2 0.7636 0.2026 0.2026
N 8830 8830 8830

Note: Results from an OLS regression with time fixed effects (Delay 10 and 15). Heteroskedasticity-
robust standard errors in parentheses. All specifications include the same nine regressors. Delay 10 and
Delay 15 are indicator variables for the different delay periods and reference delay 5. The dependent
variable in column (1) is the utility loss (in %) from delaying optimal climate policy. Column (2) uses
the consumption-equivalent DWL (φ(L) in %), and column (3) uses the absolute DWL in billions of 2020
USD.
*** p < 0.01, ** p < 0.05, * p < 0.1.
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Appendix366

A1. Model and dynamics367

This section formally describes the model setup and proves Proposition A.1.368

Decisions occur on a finite set of times T0, T1, . . . , TN , measured in calendar years369

(e.g., T0 = 2020, T1 ∈ {2025, 2030, 2035}, etc.). At each decision time Tt and370

node, the social planner (our representative agent) chooses the mitigation rate371

mt ∈ [0, m̄] that applies over the entire subsequent interval [Tt, Tt+1). Values372

mt > 1 are net removal of CO2 (direct air capture and related negative-emissions373

technologies) at a backstop premium. In our benchmark calibration, m̄ = 1.5 and374

the backstop premium is $10,000.375

Following Daniel, Litterman andWagner (2019), we embed the planner in a non-376

recombining binomial tree in which each node inherits a current fragility state that377

indexes how severe climate damages have turned out so far. The high-fragility378

branches correspond to high realized damages (or bad climate/economic states),379

and the low-fragility branch to more benign outcomes. Uncertainty therefore380

resolves gradually along the tree rather than all at once. At each node, the agent381

re-optimizes given the currently realized state.382

This structure matters for two reasons. First, it makes the problem explic-383

itly stochastic as future consumption, temperature, and damages differ across384

branches. Second, it allows us to separate aversion to risk across time from385

aversion to risk across states of nature. The same structure also lets us impose386

politically relevant constraints on early climate policy: we can constrain the agent387

not to mitigate for an initial window and then ask how the system behaves once388

the constraint is lifted.389

We analyze delays in mitigation by imposing an exogenous no-mitigation period390

of length L years. Formally, for a given L ∈ {5, 10, 15}, we impose mt = 0 for all391

decision times Tt < L, and relax this constraint for Tt ≥ L.5 We compare each392

5In our standard calibration, this corresponds to constraining T0 only.



scenario to a common unconstrained baseline with a node at Tt = 10 in which393

the planner is free to choose mt at all decision times.394

Preferences follow a standard Epstein-Zin recursive specification as in Equa-395

tion (1) with terminal utility given by Equation (2). For our main specification,396

parameter values are as follows: PRTP(δ) = 0.002; EIS(σ) = 0.833; RA(γ) = 10;397

consumption growth p.a. = 0.02; exog. tech change = 0.015; endo. tech learning =398

0; baseline emissions = SSP2; backstop premium = 10 000.399

Emissions, climate dynamics, costs, and damages400

For expositional clarity, throughout this subsection we fix an arbitrary realiza-401

tion (i.e., path) of uncertainty and suppress state indices; all objects (mt, θt, Lt, κt,Φt, τt)402

are thus defined along a single path in our binomial tree.403

Let Et > 0 denote the baseline (business-as-usual) CO2 emissions over the404

interval [Tt, Tt+1), based on a reference socioeconomic pathway (e.g., SSP2). The405

planner can abate a fraction mt ∈ [0, m̄] of those baseline emissions, so realized406

emissions over that interval are407

(A1) et = (1−mt)Et.

The climate state at time Tt is characterized by two key variables: atmospheric408

CO2 concentration Ct (in ppm) and temperature anomaly θt (in ◦C above prein-409

dustrial).410

Atmospheric CO2 concentration Ct evolves as the convolution of past emissions411

with the impulse response function (IRF) of the carbon cycle, following Joos et al.412

(2013):413

(A2) Ct = C0 + χ

∫ t

0
Ψ(t− s)es ds, where Ψ(s) = a0 +

3∑
i=1

ai exp(−s/bi),

with χ = 1/7.8 = 0.128 ppm/GtCO2 and coefficients a0 = 0.2173, a1 = 0.2240,414
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a2 = 0.2824, a3 = 0.2763, and time constants b1 = 394.4, b2 = 36.54, b3 = 4.304415

years. All ai, bi > 0, so concentrations are strictly increasing in cumulative416

emissions. These parameters capture the multiple carbon-cycle reservoirs (at-417

mosphere, mixed-layer ocean, deep ocean, biosphere) and the long-lived airborne418

fraction a0.419

The global mean surface temperature anomaly θt is linked to cumulative emis-420

sions through the Transient Climate Response to Cumulative Emissions (TCRE)421

framework following AR6:422

(A3) θt = λeff

∫ t

0
eu du, λeff := λ

1− fnc
.

Here eu denotes CO2 emissions at time u measured in thousand gigatonnes of423

CO2 per year (TtCO2/yr), so that
∫ t

0 eu du is cumulative emissions in thousands424

GtCO2. The parameter λ > 0 (in K per 1000 GtCO2) is the TCRE for CO2-425

only warming, while fnc ∈ (0, 1) scales in the contribution from non-CO2 forcing.426

Following Bauer, Proistosescu and Wagner (2024), we take the effective TCRE to427

be λeff ∼ N (0.52, 0.212) K per TtCO2.428

This formulation implies three key properties for our analytical results:429

(i) Ct and θt are strictly increasing in the emissions path {es}s≤t because430

Ψ(ζ) ≥ 0 and λeff > 0.431

(ii) The multi-timescale IRF ensures that past emissions affect concentrations432

far into the future, with fraction a0 remaining indefinitely.433

(iii) High emissions in [Ti, Ti+1) permanently elevate both Ct and θt for all sub-434

sequent times.435

Based on Burke, Davis and Diffenbaugh (2018); Rose, Diaz and Blanford (2017);436

Howard and Sterner (2017); Dietz et al. (2021), damages are represented as the437

sum of an aggregate temperature-based loss component and an additional com-438



ponent from climate tipping points:439

(A4) dt = D(k)(θt) + dtp(θt), D(k)(θt) = δ
(k)
1 θt + δ

(k)
2 θ2

t

where k ∈ {statistical, structural, meta} indexes the aggregate damage family,440

and dtp(θt) captures the expected effect of climate tipping events. The coefficients441

(δ(k)
1 , δ

(k)
2 ) were calibrated by (Bauer, Proistosescu and Wagner, 2024) from the442

respective sources and may vary across periods6, but for any fixed t, each D(k) is443

quadratic in θt and increasing on the temperature range we study (0-6◦C).444

The structural IAM function (Rose, Diaz and Blanford, 2017) and the meta-445

analytic function (Howard and Sterner, 2017) are convex (δ(·)
2,t > 0) over our446

calibration. The statistical function (Burke, Hsiang and Miguel, 2015) is convex447

through mid-century and becomes mildly concave in late-century (δ(stat)
2,t < 0 for t448

after 2100) but remains increasing on the relevant temperature range. The tipping449

component dtp(θt) is also quadratic with positive curvature (Dietz et al., 2021),450

so it raises marginal damages at higher temperatures. To not rely too heavily451

on single estimates, our main specification averages across the three aggregate452

families with equal probability and adds the tipping component in every draw.453

Hence, we define the model-averaged damages at time t as454

(A5) D̄(θt) := Ek
[
D(k)(θt) + dtp(θt)

]
∀k,

where the expectation is over the three aggregate families with equal weights. In455

our main specification, this means D̄(θt) is twice continuously differentiable and456

satisfies457

(A6) dD̄(θt)
dθt

> 0 and d2D̄(θt)
dθ2
t

≥ 0

6The statistical specification from (Burke, Hsiang and Miguel, 2015), for example, uses distinct mid-
and end-century calibration.
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for temperatures between 0 and 6 ◦C.458

The period-t marginal abatement cost curve (MACC) follows the exponential459

form and is calibrated to IPCC AR6 Working Group III data (Intergovernmen-460

tal Panel on Climate Change , IPCC), consistent with Bauer, Proistosescu and461

Wagner (2024). For a mitigation rate mt ∈ [0, m̄] and technology and learning462

state Lt, which captures both exogenous and endogenous technological progress,463

we specify464

(A7) τt(mt, Lt) =


Ltτ0

(
eξmt − 1

)
, 0 ≤ mt ≤ 1,

Lt(τ0 + τprem)
(
eξmt − 1

)
, mt > 1,

where τ0 > 0 and ξ > 0 are level and curvature parameters, and τprem > 0 is a465

backstop premium representing the additional cost of net-negative emissions (e.g.,466

direct air capture). The corresponding total mitigation cost function is obtained467

by integrating the marginal cost curve for mt ≤ 1,468

(A8) κt(mt, Lt) = Lt τ0

(
eξmt − 1

ξ
−mt

)
, (0 ≤ mt ≤ 1),

and analogously with τ0 + τprem for mt > 1.7 On each regime mt ∈ [0, 1] and469

mt > 1, the function κt(·, ·) is twice continuously differentiable, strictly increasing470

and convex in mt, and weakly increasing in the learning factor Lt. Higher Lt471

indicates less technological progress and therefore higher costs, while lower Lt472

reflects learning-by-doing and innovation that shift the MACC downward.473

The learning factor Lt evolves according to cumulative mitigation experience474

and exogenous technological improvement. Hence,475

(A9) Lt =
(
1− ψ0 − ψ1Xt

)(Yt−Yref),

where Yt is the calendar year at decision time Tt, Yref is the reference year used476

7Note that this creates a level jump at mt = 1.



for calibration (2030 in our baseline), and parameters ψ0 ≥ 0 and ψ1 ≥ 0 capture477

exogenous and endogenous technological progress, respectively. The term Xt478

represents the weighted average mitigation up to time t,479

(A10) Xt :=
∫ t

0 m(ζ)E(ζ)dζ∫ t
0 E(ζ)dζ

,

so that stronger cumulative mitigation or faster exogenous innovation lowers Lt480

and thereby reduces future abatement costs.481

Let yt be gross resources available for consumption at time Tt. Actual con-482

sumption is then determined by483

(A11) ct = yt − κt(mt, Lt)− dt(θt).

Delay thus reduces consumption through a more deteriorated climate state caus-484

ing higher damages, and slower cost decline raising mitigation costs.485

Optimal expected carbon prices486

To compare policies at a given decision time t, we now take expectations across487

nodes, as in the main text (see Equation (3)).488

Proposition A.1. (Delay raises the expected entry carbon price) Assume baseline489

emissions are strictly positive in all periods prior to T1, i.e., Et > 0 for all490

Tt < T1. Suppose:491

(i) The delay constraint is binding in the baseline period, i.e., there exists t < T1492

with mbase
t > 0, while in the delayed scenario mdelay

t = 0 for all Tt < T1;493

(ii) The carbon-cycle and TCRE mappings in (A2)–(A3) satisfy Ψ(ζ) ≥ 0 and494

λeff > 0, so climate dynamics are monotone;495

(iii) Model-averaged damages are increasing and weakly convex: D̄′(θ) > 0 and496

D̄′′(θ) ≥ 0 (cf. (A5));497
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(iv) The optimal mT1 is interior in both the base and delay scenarios.498

Then, for every node s ∈ ST1, τ
delay
T1,s

≥ τ baseT1,s
, and therefore, taking expectations499

across nodes,500

(A12) τdelay1 ≥ τ base1 ,

with strict inequality whenever θdelayT1,s
> θbaseT1,s

on a set of nodes with positive prob-501

ability (equivalently, when E1[θdelay1,S ] > E1[θbase1,S ]).502

Proof. Fix an arbitrary node s ∈ ST1 and consider the unique history (path) lead-503

ing to s under the baseline and delayed scenarios. By construction, mdelay
t = 0 for504

all Tt < T1, while by (i) there exists some t < T1 with mbase
t > 0. From (A1), for505

at least one such t we have edelayt = (1−0)Et = Et > (1−mbase
t )Et = ebaset . Hence506

cumulative emissions up to T1 are (weakly) higher along the delayed path. By (ii)507

and the monotonicity of the carbon-cycle IRF and TCRE mappings (A2)–(A3),508

higher past emissions imply a (weakly) worse climate state at T1: Cdelay
T1,s

≥ Cbase
T1,s

509

and θdelayT1,s
≥ θbaseT1,s

, with strict inequality if baseline mitigation was positive on510

a nonzero set. By (iii), marginal damages are increasing in temperature, so511

ΦT1,s(θ
delay
T1,s

) ≥ ΦT1,s(θbaseT1,s
), strictly when θdelayT1,s

> θbaseT1,s
. Under the interior first-512

order condition at node (T1, s), τdelayT1,s
= ΦT1,s(θ

delay
T1,s

) and τbaseT1,s
= ΦT1,s(θbaseT1,s

),513

which implies the path-wise inequality τdelayT1,s
≥ τbaseT1,s

. Taking expectations across514

nodes yields τdelay1 = ET1 [τdelayT1,S
] ≥ ET1 [τbaseT1,S

] = τbase1 , with strict inequality if515

θdelayT1,s
> θbaseT1,s

on a set of nodes with positive probability. Finally, delay implies516

a smaller technology stock (higher LT1,s) because learning-by-doing accumulates517

more slowly when early mitigation is zero. By (A9), Ldelay
T1,s

≥ Lbase
T1,s

, and since mit-518

igation costs are increasing in Lt, κT1,s(mT1,s, L
delay
T1,s

) ≥ κT1,s(mT1,s, L
base
T1,s

). Hence519

the total resource cost under delay is weakly higher, reinforcing the conclusion520

that τdelay1 ≥ τbase1 . �521



Table A1—: OLS estimate of the delay-to-price elasticity

(1)
L (years) 0.002761

(0.000487)
Constant 5.241717

(0.004929)
R2 0.969818
Observations 3

Note: Dependent variable: log(τdelay
L ). Robust standard errors in parentheses. 95% confidence interval

for the slope: [0.001806, 0.003715], i.e. [0.181%, 0.372%] per year.

Regression results delay-to-price elasticity522

A2. Analytical solutions523

Cobb-Douglas limit of the EZ aggregator and the first periodic524

compensation525

Solving for the consumption–equivalent DWL of delay when ρ 6= 0 is done in526

the main text. Here we consider the Cobb–Douglas case ρ = 0 (i.e. σ = 1).527

As ρ → 0, the Epstein–Zin aggregator U0 =
(
(1 − β)cρ0 + β CEρ1

)1/ρ converges528

to the geometric (Cobb–Douglas) form U0 = c 1−β
0 CEβ

1 . Let the delayed path529

have first–period consumption cD0 and continuation certainty equivalent CED1 .530

We scale the first–period consumption by (1 + φ) and require the compensated531

delayed utility to equal the baseline utility U?0 : U?0 =
(
(1 + φ)cD0

)1−β(CED1 )β.532

Solving for φ gives the closed-form consumption-equivalent transfer:533

(A13) φCD =
[

U?0
(cD0 ) 1−β (CED1 )β

] 1
1−β

− 1.

A3. Extended outputs534
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Figure A1. : Different outputs of the single-period optimal scenarios with delay
periods L ∈ {5, 10, 15}.

Note: A: Expected carbon prices in 2020 $/tCO2. B: Expected abatement in %. C: Emissions in
GtCO2/year with SSP2 emissions baseline. D: Temperature in degrees Celsius. E: CO2 concentration
in ppm. F: Economic damages in % of Gross Domestic Product.



(a) Optimal price tree with 5-year delay.

(b) Optimal price tree with 10-year delay.

Figure A2. : Decision trees for delayed runs.
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(c) Optimal price tree with 15-year delay.

Figure A2. : Decision trees for delayed runs (continued).


