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Delayed climate mitigation imposes substantial economic costs
by shifting the burden of adjustment onto future generations. We
quantify these welfare losses within a climate-economy model that
allows us to calculate the dead-weight loss (DWL) of underpricing
carbon pollution. We simulate policy delay by constraining initial
mitigation years and comparing resulting welfare outcomes to an
unconstrained baseline. We show analytically that delay raises the
required expected entry carbon price. Across scenarios, expected
re-entry prices are higher by roughly 0.4-0.9% per additional year
of delay. The consumption-equivalent DWL even for short delays
of 5 to 15 years ranges from 14-32% of first-period consumption,
or roughly $8-19 trillion (2020 USD) in one-time compensation.
DWLs rise steeply but concavely in the length of delay, reflecting

catch-up pricing and abatement once the constraint lifts.

JEL: D62,G12,Q5/
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5 Climate economics is, at its core, the economics of delaying optimal choice. Con-
s sequences of delaying climate mitigation are profound and quantifiable, as every
7 year without meaningful reductions in greenhouse gas emissions increases their
s concentration and commits the world to higher temperature and greater climate

o damages. From an economic perspective, these delays are an implicit transfer of

* Daniel: Columbia Business School, New York, NY 10027; Litterman: Kepos Capital, New York, NY
10036; Wagner: Columbia Business School, New York, NY 10027; gwagner@columbia.edu. We thank
Theo Moers for excellent research assistance, and participants in the 2025 Dialogues in Complexity
Workshop at Princeton University for thoughtful comments.
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welfare from future generations to the present, an intertemporal reallocation that
is driven not by efficiency but political and institutional frictions. Understanding
the dynamics of this delay and quantifying the resulting dead-weight loss (DWL)

is essential in understanding the true cost of inaction.

Most climate-economic integrated assessment models (IAMs) seek to identify
the optimal mitigation path that maximizes intertemporal social welfare under
a set of assumed parameters. Yet governments rarely, if ever, follow the paths
that economists identify as socially optimal. Corporate lobbying (Oreskes and
Conway, 2011) and other interest-group politics (Mildenberger, 2020), in part via
public opinion (Dechezleprétre et al., 2025; Mildenberger and Tingley, 2019), in-
stitutional constraints (Bertram et al., 2024), behavioral barriers (Wagner and
Zeckhauser, 2012), and other political economy considerations (Meckling, Sterner
and Wagner, 2017; Meckling, 2025) defer action, even when — or perhaps espe-

cially when — the social planner’s problem is well understood.!

The more explicit the attempt at pricing the negative climate externality, the
louder are the voices of vested interests lobbying against climate policy. This
delay in climate action moves the world further off the efficient frontier, which
does not just lead to greater economic damages reflected in higher social cost of

carbon (SCC) calculations (Moore et al., 2024), but in measurable DWLs.

Here we examine these costs explicitly. Building on a carbon asset pricing
framework (Bauer, Proistosescu and Wagner, 2024), which extends the Epstein—Zin]
recursive preference structure of Daniel, Litterman and Wagner (2019), we quan-
tify DWLs of delaying optimal policy by comparing carbon price paths under
constrained and unconstrained conditions, analyzing sensitivities of various model
parameters, including technological progress and learning. In contrast to Daniel,
Litterman and Wagner (2019), we further show that the optimal expected carbon
price in a delayed scenario will be higher under standard assumptions than in an

1Tt is also what makes ez-post analyses of existing policies so fraught (Stechemesser et al., 2024):
Policies that get enacted are necessarily limited in scope and strength.
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ECONOMIC DAMAGES OF DELAYED CLIMATE ACTION 3

unconstrained scenario.

We present simple heuristics about the high and quickly accumulating costs of
delayed climate action, finding DWLs of delay of between 14-32% of first-period
consumption, or $8-19 trillion (2020 USD), even for relatively short delays of
between 5 and 15 years. These numbers compare to cost estimates of between
$400 and $900 per U.S. household per year, or about $50 to $110 billion per year
for the United States (Clausing, Knittel and Wolfram, 2025) and are significantly
higher than typically calculated, using SCC-based measures. The optimal carbon
price in our base case here is roughly $200, above the median value of around $185
of Moore et al. (2024)’s “synthetic distribution” yet well below its mean SCC of
around $280. Meanwhile, Bilal and Kénzig (2025) calculate an SCC above $1500
and a welfare cost of (only) around 30%. A key difference to our analysis: we
solve for the ‘optimal’ carbon price by considering marginal disutility of damages,
instead of calculating the SCC, the discounted value of the stream of expected

future damages.
I. Socio-economic modeling choices

To explore how postponing climate policy affects welfare and the socially opti-
mal carbon price path, we endow a representative agent with recursive Epstein-
Zin (EZ) preferences and place it within a binomial decision tree where utility
is maximized at each step. Such preferences allow us to disentangle risk over
time from risk across states of nature. This distinction follows Epstein and Zin
(1989, 1991), with a long history in financial economics, and a more recent one
in modeling the financial implications of climate risks (Ackerman, Stanton and
Bueno, 2013; Traeger, 2014; Lemoine and Traeger, 2014).

The representative agent’s preferences follow the recursive Epstein—Zin specifi-

cation,

0 v = ((1- 81 + R ),
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where 3 := (1+6)~! > 0 is the one-year discount factor, with § > 0 denoting the
pure rate of time preference (PRTP); ¢; > 0 is consumption at time ¢; p := 1—1/0,
where o > 0 is the elasticity of intertemporal substitution (EIS); and o :=1 — 1,
where v > 0 is the coefficient of relative risk aversion (RA). The term E;(Uf, )
represents the certainty equivalent of future utility.

When a = p, that is, when risk aversion and intertemporal substitution coin-
cide, the recursive formulation in Equation (1) collapses to the standard time-
additive expected-utility form with constant relative risk aversion.

For the terminal period T, we assume exogenous consumption growth g > 0

and define terminal utility as

1-8 1/p
e

@ Ur =[5t

This specification cleanly separates two central preference parameters: o, which
governs willingness to substitute consumption over time, and 7, which governs

aversion to risk across uncertain future states.?
II. Optimization

Following Daniel, Litterman and Wagner (2019) and Bauer, Proistosescu and
Wagner (2024), we embed the representative agent in a finite-horizon probability
landscape. Our model has six decision times Tp,...,T5 (Figure 1). At every
node (t,s) of the tree, the agent maximizes EZ utility in (1) and chooses a node-
specific mitigation level m; s € [0, m] with upper mitigation bound m, subject to
climate dynamics, resource constraints, abatement costs, climate damages, and
the technological feasibility of mitigation. Each choice commits the agent to a
continuation policy for all downstream nodes in a given branch.

The climate state evolves according to the impulse response function (IRF) of

Joos et al. (2013) for atmospheric CO2 concentration C' and the TCRE map-

2See Appendix A.A1l for parameter values used in our main specification.
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Figure 1. : Optimal price paths (unconstrained baseline)

Note: The binomial non-recombining tree shows the optimal node-level shadow-price trajectory on the
stochastic decision tree used in the model. Each node represents a shadow price (in 2020 USD per ton
COz2) at the beginning of the indicated year, conditional on previous realizations of climate and economic
uncertainty.
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ping from cumulative emissions to the global mean surface temperature anomaly
6 (in °C above preindustrial), see Eqs. (A2)-(A3) in Appendix A.Al. Our im-
plementation uses a carbon cycle model with persistent parameters from Joos
et al. (2013) and uncertain effective TCRE e ~ N(0.52,0.212). For analytical
results we employ a stylized finite-dimensional representation that preserves the
key monotonicity properties.

Define at node (¢,s) the marginal willingness to pay ®;.(6;s) to avoid one
additional ton of COg emitted in [T}, T;+1). Mitigation has node-specific marginal
cost ky (M5, Lt s) = Okt s(Mis, Lis) /Oy s.

At decision time t, let S; denote the set of nodes (states) and {7 s}ses, the
probabilities of those nodes, conditional on information at the start of period ¢.

For any node-level variable :ct783, write its cross-node expectation as

(3) xy =By [y, 5] = Z Tt sTt,5-

seS
We summarize period ¢ by the expected objects ®; := E¢[®; 5] and ry := B[k} g]
when needed (using (3)).

The climate state at node (¢, s) is (Cts,0:5), with Cy s and 6; s generated by
Eqgs. (A2)—(A3). Period-t expectations are Cy := E[Ct g] and 0; := E[f; s]. On
the cost side, mitigation has node-specific marginal cost /4278 (my.s, Lt s), where Ly g
indexes both exogenous technological progress and endogenous learning-by-doing.

Past mitigation lowers future costs by shifting down the marginal cost curve.
ITII. Carbon price paths under delay

To test the cost of delay, we impose a zero-mitigation constraint for the first
decision node and vary the length L of that period by shifting the initial decision
time between 5, 10, and 15 years: L € {5,10,15}. Each constrained run is then

evaluated against two baseline scenarios, depending on the figure—the optimal

3Subscript (t,s) denotes a node-level object; subscript ¢ alone denotes its period-t expectation across
s € S with weights 7 s.
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ECONOMIC DAMAGES OF DELAYED CLIMATE ACTION 7

expected price at the same L, and one common L = 10 baseline. Figure 2 shows
the resulting optimal carbon price paths in expectation over time. We here find
that the carbon price paths in expectation of each delayed scenario lie above the

baseline scenario’s levels.?

If the optimum at time T; is interior (i.e., m;; € (0,m) for all s € &) and
baseline emissions F; > 0, the first-order condition at each node equates the

node—specific marginal abatement cost to the node—specific marginal damage:

(4) Tt = K (m;S(Ot,s,Lt,s), Lt,s> =D (0rs), SES

where #y ((mys, Lis) = Okt,s/Omys. We summarize the decision period by the

expected carbon price,

(5) 7= Ee[ms] = B[Pt 5(0:5)] = Z s Do s(Or.5),

SES:
which is the probability—weighted average across all nodes at time t. Learn-
ing-by—doing and exogenous technological progress enter through L;, shifting

RQ’ s and thereby altering both the node-level prices 7; s and the expected price 7;.

For period-level values, define the expected total mitigation cost and expected
marginal abatement cost as w; = Ei[nys] and sy := Eqy[x} g]. Note that be-
cause my s is node-specific, } # 0k¢/Om in general. At the node level, however,
Kt s(Mis, Lis) = Ok s(Mys, Lts) /Oy s

Delaying mitigation creates a deviation from optimal choice. By not allowing for
mitigation for the first L years the world reaches the first unconstrained decision
date T7 = L with a worse climate state: higher cumulative emissions, higher
atmospheric COsq across persistence reservoirs, and higher temperatures. In that
state, marginal damages are higher than they would have been without delay, and

the representative agent’s marginal willingness to pay to avoid one ton of COg,

4See Figure Al for other outputs, like emissions and economic damages.
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Figure 2. : Optimal COs-price paths under delayed policy implementation.

Note: Six decision times are used in all runs, but the length of the first decision period is varied between
5, 10, and 15 years, while all subsequent time steps remain fixed. Each delay scenario (5 yr, 10 yr, 15 yr)
is solved as an independent run. We also show a canonical baseline scenario with a decision time at the
10-year step. The resulting carbon price paths show that postponing mitigation leads to a sharp upward
adjustment in the first active period, followed by convergence toward the optimal no-delay trajectory.

®7(0r), is higher than it would have been without delay.

Worse still, delaying mitigation also means postponing learning-by-doing. Forc-
ing my = 0 in the early window removes that source of endogenous cost decline
(see Proposition A.1). As a result, when the world begins to act optimally at
Ty = L, it faces both a more fragile climate state and a less mature—more
expensive—abatement cost curve. The representative agent’s optimal response
is therefore to start the policy period with a higher expected carbon price than
in the no-delay baseline, and to immediately mitigate more aggressively. This
jump in the required expected entry carbon price is structural: it comes from
state dependence in climate damages and from foregone technological progress,

not from a particular calibration of parameters.

Formally, under standard convexity of abatement costs and monotonicity of
damages in the climate state (Appendix A.Al), the optimal expected carbon
price at 77 = L in the delayed scenario, Tgelay, is weakly higher than the optimal
expected carbon price at the same time in the no-delay baseline, TEase, with

strict inequality whenever the no-mitigation constraint was binding. The state-
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ECONOMIC DAMAGES OF DELAYED CLIMATE ACTION 9

Table 1—: Delay-to-price elasticity at re-entry

L (years) Year  7pPase Tgelay Alog(t) n(L) (%/yr)
) 2025 $182.97 $191.35 0.044810 0.896
10 2030 $181.55 $194.83 0.070607 0.706
15 2035 $184.49 $196.71 0.064150 0.428
Average 0.677

dependence logic is formalized in Proposition A.1 (Appendix A.A1).

We summarize the expected price impact with the delay-to-price elasticity

__ Olog Tgelay
(6) n(L) = oL

which is the percent increase in the required expected entry carbon price at the
first unconstrained decision time per additional year of forced delay. Because
our model is solved at discrete delay lengths only, we estimate n(L) by finite
differences using L € {5, 10,15}, i.e., n(L) =~ (log Tgelay — log TP35¢) /L.

Table 1 reports the resulting elasticities. For a 5-year delay, the required re-
entry expected price rises from $182.97 to $191.35, which corresponds to about an
0.896% higher expected price per year of delay. For 10 and 15 years of delay, the
effect remains positive but declines to 0.706% and 0.428% per year, respectively.
Averaging across the three scenarios yields an elasticity of about 0.677% per year.
A simple log—linear fit of the delayed expected prices on the delay length gives a
smaller, global elasticity of 0.276% per year (SE: 0.000487), with a 95% confidence
interval of [0.181%, 0.372%]. This confirms Proposition A.1: In every scenario
we consider, a binding delay raises the required expected entry carbon price.
The elasticity is declining in L, which implies a concave delay-price relationship:
early years of inaction are disproportionally costly, as they push the system into
a higher-damage (and technically, low-learning) state, while additional years of

delay add to the carbon debt at a diminishing marginal rate.

As a robustness check, we also estimate a pooled delay-to-price elasticity across
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the three scenarios by regressing the delayed re-entry expected price on the length

of the delay,

(7) log(Tgela )=a+ nOLSL +er,

o —

which yields log(7i°®) = 5.241740.0028 L, with R? = 0.97. The slope coefficient
nOLS = 0.0028 implies that, on average across the 5-15 year range, each extra
year of delay raises the required expected entry carbon price by about 0.276%

per year. The 95% confidence interval corresponds to [0.181%, 0.372%] per year.
IV. Estimating deadweight losses (DWLs) of delay

To quantify the societal cost of delayed action, we compute the DWL associated
with postponing mitigation. Specifically, we determine the additional consump-
tion in the first period required to restore lifetime utility of the representative
agent to the level of the unconstrained (baseline) case. Denoting baseline utility
at the root as Uy, first-period consumption in the delayed scenario as cOD , and the
expected (certainty-equivalent) future utility as CEP := (Eo[U{])Y/®, we define
the consumption-equivalent DWL ¢ > 0 implicitly by

(®) Us = (0= B)((1+9)cb)” + BCEPY) "
Solving for ¢ yields®

[Wg)r - BCEP) ]
) S - R

Applying this metric, we find that the DWL of delayed mitigation rises with the
duration of inaction (Table 2). In our main specification, enforced bans on mitiga-
tion force higher entry expected carbon prices at 17 = L, which we capture with

the delay-to-price elasticity n(L); that higher required expected starting price

5In the case of p = 0, we apply the Cobb-Douglas limit as derived in Appendix A.A2
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ECONOMIC DAMAGES OF DELAYED CLIMATE ACTION 11

Table 2—: Social cost of delaying climate action under alternative baselines

First

period length Canonical baseline Aligned baseline Difference
L (years) (p-p.)
DWL DWL DWL DWL
(%) (2020 USD tn) (%) (2020 USD tn)
5 14.24 8.2 13.00 7.5 —1.24
10 21.82 12.6 21.87 12.7 +0.05
15 32.21 18.7 33.10 19.1 +0.89

Note: Deadweight loss (DWL) represents the consumption-equivalent compensation required for lifetime
utility in the delayed-mitigation scenario to equal that in the corresponding baseline. The canonical
baseline fixes the first decision period at 10 years across all runs to enable direct DWL comparisons. The
aligned baseline matches each delay scenario to an unconstrained run with the same decision timeline
(e.g., b-year delay vs. 5-year baseline). The minor difference for the 10-year scenario reflects stochastic
draws in the model’s Monte Carlo simulations. Dollar values are in trillions of 2020 USD.

translates directly into a larger consumption-equivalent DWL ¢. In our main
specification, banning mitigation for five years, ten years, and fifteen years pro-
duces a DWL of delay of roughly 14%, 22%, and 32% of first-period consumption,
respectively. In monetary terms, these correspond to about $8.3tn, $12.8tn, and
$18.8tn in one-time global compensation at the start of the policy window. Each
additional year of delay raises the DWL by about $1.05 trillion per year over the
5—-15 year range, i.e., roughly 1.8 percentage points of first-period consumption
per year. A simple log-log fit implies ¢(L) oc L%73 indicating sub-linear scaling
and modestly declining marginal losses as the delay lengthens.

These DWLs increase with delay length, but not linearly. Longer bans on
mitigation give the representative agent at the next decision time a more polluted
atmosphere and therefore require a higher expected starting carbon price at 17 =
L under our standard assumptions. The agent then responds by catching up:
once mitigation is finally allowed, the optimal policy sharply raises the expected
carbon price at 17 = L relative to the no-delay baseline and moves immediately
to very aggressive abatement. This catch-up behavior is economically painful in
the short run, which shows up in ¢(L), but it stabilizes the long run by limiting

further deterioration of the climate-economy state. Numerically, in our baseline



206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

222

223

224

225

226

227

228

229

230

231

232

233

calibration ¢(L) rises quickly between 0 and 10 years of delay and continues to
rise thereafter, though at a slower rate (Table 2). In our benchmark runs, then,
the exogenously induced delay has a clearly measurable cost: for the 5-15 year
range we study, every additional year without mitigation forces the social planner
to start the policy period with an expected carbon price between about 0.4 and
0.9 percent higher than it otherwise would have been, with an average of 0.7
percent. The regression-based estimate is smaller because it smooths across the
three scenarios, but it preserves the sign and the basic message: delay makes the
first feasible expected carbon price higher.

Figure 3 examines the consequences of relaxing the stringency of the first-period
policy constraint by imposing an upper bound m(t) < p on the mitigation rate
over the initial interval ¢t € [0, L], where p € [0,1] denotes the maximum share
of baseline emissions that may be abated. For caps close to the unconstrained
solution, the DWL increases approximately quadratically in the cap’s tightness,
with the level of the loss rising in the duration of the delay L.

This quadratic relationship provides a simple heuristic for why even limited
early mitigation recovers a disproportionate fraction of welfare, and why DWL
converges rapidly to zero as p approaches the smallest nonbinding cap (and the
constraint ceases to bind). Conversely, the marginal welfare gain from relaxing

the constraint is decreasing in p.
V. Evaluating parameter importance

Understanding why delay is so costly requires unpacking which structural prim-

itives make the carbon-debt difference T‘Lielay — TEase

and its elasticity as per Equa-
tion (6) large, and therefore drive the DWL penalty ¢. Figure 4 offers a first look,
plotting the DWL of delay against four structural drivers: EIS, PRTP, exogenous
technological change, and endogenous learning. Lines show within-delay OLS fits
of the expected DWL on the parameter value. The fitted Gaussian curves show

the distribution of ¢(L) for the different delay lengths given our parameter space.
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Figure 3. : DWL as a function of allowed partial mitigation p in the first period.

Note: Policies are compared under the aligned baseline in the main specification (see Appendix A.A1).
Small variation in smoothness are due to the stochastic nature of the model.

The central result is that impatience dominates. When societies heavily discount
the future, no amount of technological progress or learning can offset the welfare

lost from postponing mitigation.

Parameter sensitivities in Table 3 show which economic mechanisms drive the
DWTL of delaying climate action in a multivariate regression, i.e., they show partial
OLS effects within our parameter grid. We estimate these effects over a broad
random draw of the model’s structural parameters, each sampled independently
from its prior probability distribution. This approach ensures that coefficients
capture partial effects across the full range of plausible economic and technological
states. Each parameter thus maps a structural assumption into an economic

intuition about risk, time, and technology.

Higher risk aversion (RA) raises the shadow value of insurance against uncertain
climate damages. A one-point increase in v raises the DWL by roughly 0.25
percentage points, or about $147 billion. This result is highly significant. Agents
who are risk-averse value early mitigation more strongly as protection against
catastrophic tail outcomes. Nonetheless, RA across states of nature matters less

than aversion across time (see EIS): what dominates is not which climate future
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Figure 4. : Variance decomposition of deadweight losses (DWLs) by structural
parameters.

Note: The figure truncates the vertical axis at 30% to improve visibility. This range contains approxi-
mately 95% of observations.

occurs but how long society waits to act.

The EIS is the single strongest behavioral determinant of delay costs. A 0.1
increase in o (within the sampled range of 0.55-1.1) raises the DWL by about
5%, or $3 trillion (p < 0.001). In the unconstrained baseline, such a society is
willing to sacrifice some near-term consumption (via costly early mitigation) in
exchange for much lower climate damages later. A binding delay prevents that
optimal intertemporal trade, so the DWL ¢(L) from delay is larger when o is
high.



259

260

261

262

263

ECONOMIC DAMAGES OF DELAYED CLIMATE ACTION 15

Table 3—: Regression results: determinants of deadweight loss (DWL) and miti-
gation delay outcomes

O (2) (3)
Const -0.0457 -10.5381 -6301.7279
(0.0199) (8.3528) (4994.9064)
RA (v) 0.0046™" 0.2454"™" 146.7690"""
(0.0002) (0.0847) (50.6514)
EIS (o) 0.4767"" 49.7372™ 29742.5249""
(0.0057) (2.5267) (1510.9441)
Tech. change (exog.) -1.4735™" -73.5360" -43974.0590"
(0.0935) (38.5723) (23066.0244)
Tech. learning (endo.) 0.8882""" 63.7416" 38117.0615"
(0.0883) (34.3644) (20549.6858)
PRTP (9) -23.5410" -2556.3668"  -1528691.37
(0.2509) (111.3807) (66604.948)
log(Backstop premium) -0.0009 -0.6235 -372.8457
(0.0020) (0.8472) (506.6172)
Cons. growth -3.5662"" -57.4224 -34338.2212
(0.1814) (77.6601) (46440.2569)
Delay 10 0.0469™"" 3.4608"" 2069.5203""
(0.0015) (0.3973) (237.5642)
Delay 15 0.1088™ 8.5027"" 5084.5728""
(0.0021) (0.7598) (454.3852)
R? 0.7639 0.2034 0.2034
Adj. R? 0.7636 0.2026 0.2026
N 8830 8830 8830

Note: Results from an OLS regression with time fixed effects (Delay 10 and 15). Heteroskedasticity-
robust standard errors in parentheses. All specifications include the same nine regressors. Delay 10 and
Delay 15 are indicator variables for the different delay periods and reference delay 5. The dependent
variable in column (1) is the utility loss (in %) from delaying optimal climate policy. Column (2) uses
the consumption-equivalent DWL (¢(L) in %), and column (3) uses the absolute DWL in billions of 2020
USD.

X p < 0.01, ** p<0.05, * p<O0.1.

With a negative coefficient significant at the 10% level, faster exogenous tech-
nological change cushions the economy against delay. A one percentage-point
increase in the exogenous rate of technological change reduces DWL by roughly
0.7%, or about $440 billion. Independent innovation lowers future abatement

costs and partially offsets delay. When technology improves independently of



» early action, postponement hurts less because future abatement is cheaper. Con-

s versely, technological stagnation amplifies the cost of delay.

266 Endogenous technological learning has a positive coefficient that is significant
2 at the 10% level with similar magnitude to exogenous change. A one percentage-
xs point increase in learning intensity raises DWL by about 0.6%, or $380 billion.
0 'The mechanism is path dependence: delaying mitigation slows learning-by-doing,
oo delaying cost reductions and locking in higher future abatement costs. Inaction

o1 today undermines tomorrow’s productivity gains.

a2 PRTP (§) has a large and statistically significant effect. The coefficient im-
o plies that raising § by 1 percentage point lowers DWL by roughly 25.6 percentage
2 points, or § 15.3 trillion. More impatient societies (higher J, lower () care rela-
s tively less about distant future damages. In our regressions, this shows up as a
2 lower measured DWL from delay. Conversely, patient societies (low §) view delay
o7 as extremely expensive. This confirms that how we value time, not technology or

o static risk, is a first-order driver of the DWL variation across scenarios.

279 The backstop premium, that is, the long-run cost ceiling for zero-carbon tech-
20 nology, is statistically insignificant and economically negligible. A 1% change in
»  the backstop price shifts DWL by less than 0.01%, or about $0.4 billion. In the
2 model, this parameter adds a surcharge to the marginal cost of over-mitigation,
»s that is, for mitigation levels above 100%, corresponding to net carbon removal.
¢ This captures the real-world cost gap between eliminating emissions and achieving
x5 net-negative emissions through technologies such as direct air capture. Because
s optimal policy paths in our delay experiments rarely enter the over-mitigation

a7 regime, the DWL effects of the premium remain small.

288 Consumption growth enters negatively. A 1-percentage-point faster consumption-}
x  growth rate reduces the DWL by about 0.6%, or $340 billion. Even though it is
20 ot significant, the sign aligns with the theoretical expectation that faster growth

21 decreases the DWL of delay.

202 Both delay length indicator variables are positive and highly significant. FEx-
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tending the first decision period from 5 to 10 years raises the DWL by about
3.5%, or $2.1 trillion; extending to 15 years increases them by roughly 8.5%, or
$5.1 trillion. The rise is steep but concave, consistent with the model’s adaptive
catch-up dynamics: once mitigation begins, expected carbon prices jump sharply,
partially—but never fully—recovering lost welfare.

Taken together, our analysis shows that the economics of delay is fundamentally
about time preference and intertemporal trade-offs: Impatience and substitution,
not technology or risk, explain most of the DWL of inaction, underscoring that
the true price of delay is paid in lost time. Optimal carbon price paths and DWL

results under different sets of parameter assumption are in Figures A3 and A4.
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APPENDIX
Al. Model and dynamics

This section formally describes the model setup and proves Proposition A.1l.
Decisions occur on a finite set of times Ty, 11, ..., TN, measured in calendar years
(e.g., To = 2020, € {2025,2030,2035}, etc.). At each decision time T} and
node, the social planner (our representative agent) chooses the mitigation rate
my € [0,m] that applies over the entire subsequent interval [T}, T;+1). Values
my > 1 are net removal of COq (direct air capture and related negative-emissions
technologies) at a backstop premium. In our benchmark calibration, m = 1.5 and
the backstop premium is $10,000.

Following Daniel, Litterman and Wagner (2019), we embed the planner in a non-
recombining binomial tree in which each node inherits a current fragility state that
indexes how severe climate damages have turned out so far. The high-fragility
branches correspond to high realized damages (or bad climate/economic states),
and the low-fragility branch to more benign outcomes. Uncertainty therefore
resolves gradually along the tree rather than all at once. At each node, the agent
re-optimizes given the currently realized state.

This structure matters for two reasons. First, it makes the problem explic-
itly stochastic as future consumption, temperature, and damages differ across
branches. Second, it allows us to separate aversion to risk across time from
aversion to risk across states of nature. The same structure also lets us impose
politically relevant constraints on early climate policy: we can constrain the agent
not to mitigate for an initial window and then ask how the system behaves once
the constraint is lifted.

We analyze delays in mitigation by imposing an exogenous no-mitigation period
of length L years. Formally, for a given L € {5,10,15}, we impose m; = 0 for all

decision times T; < L, and relax this constraint for 7, > L. We compare each

6In our standard calibration, this corresponds to constraining T only.
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scenario to a common unconstrained baseline with a node at T; = 10 in which
the planner is free to choose m; at all decision times.

Preferences follow a standard Epstein-Zin recursive specification as in Equa-
tion (1) with terminal utility given by Equation (2). For our main specification,
parameter values are as follows: PRTP(§) = 0.002; EIS(0) = 0.833; RA(y) = 10;
consumption growth p.a. = 0.02; exog. tech change = 0.015; endo. tech learning =]

0; baseline emissions = SSP2; backstop premium = 10 000.
EMISSIONS, CLIMATE DYNAMICS, COSTS, AND DAMAGES

For expositional clarity, throughout this subsection we fix an arbitrary realiza-
tion (i.e., path) of uncertainty and suppress state indices; all objects (my, 8¢, Ly, ki, ®r, 7¢)]l
are thus defined along a single path in our binomial tree.

Let E; > 0 denote the baseline (business-as-usual) CO; emissions over the
interval [T}, Ty4+1), based on a reference socioeconomic pathway (e.g., SSP2). The
planner can abate a fraction m; € [0,m] of those baseline emissions, so realized

emissions over that interval are
(Al) €t = (1 - mt)Et.

The climate state at time T} is characterized by two key variables: atmospheric
COz concentration C; (in ppm) and temperature anomaly 6; (in °C above prein-
dustrial).

Atmospheric COs concentration Cy evolves as the convolution of past emissions
with the impulse response function (IRF) of the carbon cycle, following Joos et al.

(2013):

t 3
(A2) Cy=0Co+ X/ U(t —s)esds, where U(s) =ag+ Zai exp(—s/b;),
0

i=1

with x = 1/7.8 = 0.128 ppm/GtCO4 and coefficients ag = 0.2173, a; = 0.2240,
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as = 0.2824, a3 = 0.2763, and time constants b; = 394.4, by = 36.54, b3 = 4.304
years. All a;,b; > 0, so concentrations are strictly increasing in cumulative
emissions. These parameters capture the multiple carbon-cycle reservoirs (at-
mosphere, mixed-layer ocean, deep ocean, biosphere) and the long-lived airborne
fraction ag.

The global mean surface temperature anomaly 6, is linked to cumulative emis-
sions through the Transient Climate Response to Cumulative Emissions (TCRE)

framework following ARG:

A
1_fnc'

t
(A3) 0; = )\eff/ ey du, Aeff 1=
0

Here e, denotes COs emissions at time u measured in thousand gigatonnes of
COy per year (TtCOg/yr), so that [; e, du is cumulative emissions in thousands
GtCO;y. The parameter A > 0 (in K per 1000 GtCOs3) is the TCRE for CO»-
only warming, while f,. € (0,1) scales in the contribution from non-CO; forcing.
Following Bauer, Proistosescu and Wagner (2024), we take the effective TCRE to
be Aefr ~ N(0.52, 0.212) K per TtCOs.

This formulation implies three key properties for our analytical results:

(i) C¢ and 6; are strictly increasing in the emissions path {es}s<; because

T(¢) >0 and Aeg > 0.

(ii) The multi-timescale IRF ensures that past emissions affect concentrations

far into the future, with fraction ag remaining indefinitely.

(iii) High emissions in [T}, T;11) permanently elevate both C; and 6; for all sub-

sequent times.

Based on Burke, Davis and Diffenbaugh (2018); Rose, Diaz and Blanford (2017);
Howard and Sterner (2017); Dietz et al. (2021), damages are represented as the

sum of an aggregate temperature-based loss component and an additional com-
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ponent from climate tipping points:
(Ad) de = DW(0,) + dip(0r), DD (6) = 010, + 0567

where k € {statistical, structural, meta} indexes the aggregate damage family,
and dip(0;) captures the expected effect of climate tipping events. The coefficients
((ﬁk), (5§k)) were calibrated by (Bauer, Proistosescu and Wagner, 2024) from the
respective sources and may vary across periods’, but for any fixed ¢, each D®) is

quadratic in 6; and increasing on the temperature range we study (0-6°C).

The structural IAM function (Rose, Diaz and Blanford, 2017) and the meta-
analytic function (Howard and Sterner, 2017) are convex ((5% > 0) over our
calibration. The statistical function (Burke, Hsiang and Miguel, 2015) is convex

through mid-century and becomes mildly concave in late-century (55?:%)

<0Ofort
after 2100) but remains increasing on the relevant temperature range. The tipping
component di,(6;) is also quadratic with positive curvature (Dietz et al., 2021),
so it raises marginal damages at higher temperatures. To not rely too heavily
on single estimates, our main specification averages across the three aggregate

families with equal probability and adds the tipping component in every draw.

Hence, we define the model-averaged damages at time t as
(A5) D(6,) =By [DW(8)) + dup(61)] ¥k,

where the expectation is over the three aggregate families with equal weights. In
our main specification, this means D(f;) is twice continuously differentiable and

satisfies

dD(6;) d*D(6;)
il VLTRSS
a9, >0 and d@tz >0

(A6)

"The statistical specification from (Burke, Hsiang and Miguel, 2015), for example, uses distinct mid-
and end-century calibration.
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for temperatures between 0 and 6 °C.

The period-t marginal abatement cost curve (MACC) follows the exponential
form and is calibrated to IPCC AR6 Working Group III data (Intergovernmen-
tal Panel on Climate Change , IPCC), consistent with Bauer, Proistosescu and
Wagner (2024). For a mitigation rate m; € [0,m] and technology and learning
state Ly, which captures both exogenous and endogenous technological progress,

we specify

Lymo(ef™ — 1), 0<m <1,
(A?) Tt(mt,Lt) =

Li(m0 + Tprem)(egmf -1), my>1,

where 79 > 0 and & > 0 are level and curvature parameters, and 7P > 0 is a
backstop premium representing the additional cost of net-negative emissions (e.g.,
direct air capture). The corresponding total mitigation cost function is obtained

by integrating the marginal cost curve for m; <1,

efme — 1

(A8) Iit(mt, Lt) = Lt T0 ( f

_mt> , (0<m <),
and analogously with 79 + 7P*™ for m; > 1.8 On each regime m; € [0,1] and
my > 1, the function k(+, ) is twice continuously differentiable, strictly increasing
and convex in m;, and weakly increasing in the learning factor L;. Higher L,
indicates less technological progress and therefore higher costs, while lower L,
reflects learning-by-doing and innovation that shift the MACC downward.

The learning factor L; evolves according to cumulative mitigation experience

and exogenous technological improvement. Hence,
(A9) Ly = (1= — 1 X,) "7,

where Y; is the calendar year at decision time 7T}, Y is the reference year used

8Note that this creates a level jump at m; = 1.
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for calibration (2030 in our baseline), and parameters 1y > 0 and 11 > 0 capture
exogenous and endogenous technological progress, respectively. The term X,

represents the weighted average mitigation up to time ¢,

¥ . o M(QOE(QdC

(A10) ;
Jo E(Q)d¢

9

so that stronger cumulative mitigation or faster exogenous innovation lowers L;
and thereby reduces future abatement costs.
Let y; be gross resources available for consumption at time 7;. Actual con-

sumption is then determined by
(All) Ct = Yt — /it(mt,Lt> — dt((gt)

Delay thus reduces consumption through a more deteriorated climate state caus-

ing higher damages, and slower cost decline raising mitigation costs.
OPTIMAL EXPECTED CARBON PRICES

To compare policies at a given decision time ¢, we now take expectations across

nodes, as in the main text (see Equation (3)).

Proposition A.1. (Delay raises the expected entry carbon price) Assume baselind]
emissions are strictly positive in all periods prior to 11, i.e., By > 0 for all

Ty < Ty. Suppose:
(i) The delay constraint is binding in the baseline period, i.e., there existst < Ty

with mb*e > 0, while in the delayed scenario mi®™ =0 for all Ty < Ty ;

(i) The carbon-cycle and TCRE mappings in (A2)—(A3) satisfy ¥(¢) > 0 and

Xeff > 0, so climate dynamics are monotone;

(iii) Model-averaged damages are increasing and weakly convex: D'(9) > 0 and

D"(0) >0 (cf. (A5));
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(iv) The optimal mq, is interior in both the base and delay scenarios.

Then, for every node s € Sr,, quflel;zy > lelfsse, and therefore, taking expectations

across nodes,

(A12) delay > base

with strict inequality whenever Odelay > 9%‘18; on a set of nodes with positive prob-

ability (equivalently, when El[Qdelay] >E, [Ob“@])

Proof. Fix an arbitrary node s € Sy, and consider the unique history (path) lead-
ing to s under the baseline and delayed scenarios. By construction, m?elay = 0 for
all Ty < Ty, while by (i) there exists some t < 71 with mP2* > 0. From (A1), for
at least one such ¢ we have e/ = (1—0)E, = E; > (1—mP*°)E; = P>, Hence
cumulative emissions up to T3 are (weakly) higher along the delayed path. By (ii)
and the monotonicity of the carbon-cycle IRF and TCRE mappings (A2)-(A3),
higher past emissions imply a (weakly) worse climate state at T;: C’delay > Cbase
and Hdelay > 49}%?,536, with strict inequality if baseline mitigation was positive on
a nonzero set. By (iii), marginal damages are increasing in temperature, so
Q7 (9%?1?) > &y g (G%fif), strictly when Odelay > Gbase Under the interior first-
order condition at node (71, s), T%elsay = &p, (9%?1?’) and 7P = O, (093¢,

which implies the path-wise inequality TTelay > T:'ﬁaﬁ'e Taking expectations across

nodes yields 709% = Ep. [T:(Fielgy] > B, [7p%¢] = 7P*°, with strict inequality if
Ggﬂfliy > G%asf on a set of nodes with positive probability. Finally, delay implies

a smaller technology stock (higher Ly, 5) because learning-by-doing accumulates

more slowly when early mitigation is zero. By (A9), Ldelzy > L%asﬁ, and since mit-

igation costs are increasing in Ly, kp, s(mr, s, LdT? ) > krys(mry s, L}%?SS). Hence
the total resource cost under delay is weakly higher, reinforcing the conclusion

that 7% > phase, O
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Table A1—: OLS estimate of the delay-to-price elasticity

(1)

L (years) 0.002761
(0.000487)
Constant 5.241717
(0.004929)
R? 0.969818
Observations 3
delay

Note: Dependent variable: log(r ). Robust standard errors in parentheses. 95% confidence interval
for the slope: [0.001806, 0.003715I], i.e. [0.181%, 0.372%)] per year.

542 REGRESSION RESULTS DELAY-TO-PRICE ELASTICITY

543 A2.  Analytical solutions

544 CoOBB-DOUGLAS LIMIT OF THE EZ AGGREGATOR AND THE FIRST PERIODIC
545 COMPENSATION

546 Solving for the consumption—equivalent DWL of delay when p # 0 is done in
s the main text. Here we consider the Cobb-Douglas case p =0 (i.e. o0 = 1).

ss  As p — 0, the Epstein—Zin aggregator Uy = ((1 — 8)cf + 3 CET)UP converges
s to the geometric (Cobb—Douglas) form Uy = cO1 B CElﬂ . Let the delayed path
ss0o have first—period consumption cOD and continuation certainty equivalent CE? .
s We scale the first—period consumption by (1 4+ ¢) and require the compensated
= delayed utility to equal the baseline utility Ug: Ug = ((1 + ¢)cd )175 (CEP)A.

3 Solving for ¢ gives the closed-form consumption-equivalent transfer:

(A13) $cp =

G 1™
(') 1=F (CED)?

554 A8. Extended outputs
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Figure A2. : Decision trees for delayed runs.
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Note: The legends call out the changed parameter in each row. All other parameters follow the main
specification (base, see Appendix A.A1).
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Figure A4. : DWL ¢ (in %) under different parameter combinations.

Note: The x-axes describe the changed parameters for each graph. All other parameters follow the main
specification (base, see Appendix A.A1).



