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Delayed climate mitigation imposes substantial economic costs
by shifting the burden of adjustment onto future generations. We
quantify these welfare losses within a climate-economy model that
allows us to calculate the dead-weight loss (DWL) of underpricing
carbon pollution. We simulate policy delay by constraining initial
mitigation years and comparing resulting welfare outcomes to an
unconstrained baseline. We show analytically that delay raises the
required expected entry carbon price. Across scenarios, expected
re-entry prices are higher by roughly 0.4-0.9% per additional year
of delay. The consumption-equivalent DWL even for short delays
of 5 to 15 years ranges from 14-32% of first-period consumption,
or roughly $8-19 trillion (2020 USD) in one-time compensation.
DWLs rise steeply but concavely in the length of delay, reflecting
catch-up pricing and abatement once the constraint lifts.
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4

Climate economics is, at its core, the economics of delaying optimal choice. Con-5

sequences of delaying climate mitigation are profound and quantifiable, as every6

year without meaningful reductions in greenhouse gas emissions increases their7

concentration and commits the world to higher temperature and greater climate8

damages. From an economic perspective, these delays are an implicit transfer of9
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welfare from future generations to the present, an intertemporal reallocation that10

is driven not by efficiency but political and institutional frictions. Understanding11

the dynamics of this delay and quantifying the resulting dead-weight loss (DWL)12

is essential in understanding the true cost of inaction.13

Most climate-economic integrated assessment models (IAMs) seek to identify14

the optimal mitigation path that maximizes intertemporal social welfare under15

a set of assumed parameters. Yet governments rarely, if ever, follow the paths16

that economists identify as socially optimal. Corporate lobbying (Oreskes and17

Conway, 2011) and other interest-group politics (Mildenberger, 2020), in part via18

public opinion (Dechezleprêtre et al., 2025; Mildenberger and Tingley, 2019), in-19

stitutional constraints (Bertram et al., 2024), behavioral barriers (Wagner and20

Zeckhauser, 2012), and other political economy considerations (Meckling, Sterner21

and Wagner, 2017; Meckling, 2025) defer action, even when — or perhaps espe-22

cially when — the social planner’s problem is well understood.123

The more explicit the attempt at pricing the negative climate externality, the24

louder are the voices of vested interests lobbying against climate policy. This25

delay in climate action moves the world further off the efficient frontier, which26

does not just lead to greater economic damages reflected in higher social cost of27

carbon (SCC) calculations (Moore et al., 2024), but in measurable DWLs.28

Here we examine these costs explicitly. Building on a carbon asset pricing29

framework (Bauer, Proistosescu andWagner, 2024), which extends the Epstein–Zin30

recursive preference structure of Daniel, Litterman and Wagner (2019), we quan-31

tify DWLs of delaying optimal policy by comparing carbon price paths under32

constrained and unconstrained conditions, analyzing sensitivities of various model33

parameters, including technological progress and learning. In contrast to Daniel,34

Litterman and Wagner (2019), we further show that the optimal expected carbon35

price in a delayed scenario will be higher under standard assumptions than in an36

1It is also what makes ex-post analyses of existing policies so fraught (Stechemesser et al., 2024):
Policies that get enacted are necessarily limited in scope and strength.
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unconstrained scenario.37

We present simple heuristics about the high and quickly accumulating costs of38

delayed climate action, finding DWLs of delay of between 14-32% of first-period39

consumption, or $8-19 trillion (2020 USD), even for relatively short delays of40

between 5 and 15 years. These numbers compare to cost estimates of between41

$400 and $900 per U.S. household per year, or about $50 to $110 billion per year42

for the United States (Clausing, Knittel and Wolfram, 2025) and are significantly43

higher than typically calculated, using SCC-based measures. The optimal carbon44

price in our base case here is roughly $200, above the median value of around $18545

of Moore et al. (2024)’s “synthetic distribution” yet well below its mean SCC of46

around $280. Meanwhile, Bilal and Känzig (2025) calculate an SCC above $150047

and a welfare cost of (only) around 30%. A key difference to our analysis: we48

solve for the ‘optimal’ carbon price by considering marginal disutility of damages,49

instead of calculating the SCC, the discounted value of the stream of expected50

future damages.51

I. Socio-economic modeling choices52

To explore how postponing climate policy affects welfare and the socially opti-53

mal carbon price path, we endow a representative agent with recursive Epstein-54

Zin (EZ) preferences and place it within a binomial decision tree where utility55

is maximized at each step. Such preferences allow us to disentangle risk over56

time from risk across states of nature. This distinction follows Epstein and Zin57

(1989, 1991), with a long history in financial economics, and a more recent one58

in modeling the financial implications of climate risks (Ackerman, Stanton and59

Bueno, 2013; Traeger, 2014; Lemoine and Traeger, 2014).60

The representative agent’s preferences follow the recursive Epstein–Zin specifi-61

cation,62

(1) Ut =
(
(1− β)cρt + β

[
Et(Uαt+1)

]ρ/α)1/ρ
,



where β := (1 + δ)−1 > 0 is the one-year discount factor, with δ > 0 denoting the63

pure rate of time preference (PRTP); ct > 0 is consumption at time t; ρ := 1−1/σ,64

where σ > 0 is the elasticity of intertemporal substitution (EIS); and α := 1− γ,65

where γ > 0 is the coefficient of relative risk aversion (RA). The term Et(Uαt+1)66

represents the certainty equivalent of future utility.67

When α = ρ, that is, when risk aversion and intertemporal substitution coin-68

cide, the recursive formulation in Equation (1) collapses to the standard time-69

additive expected-utility form with constant relative risk aversion.70

For the terminal period T , we assume exogenous consumption growth g > 071

and define terminal utility as72

(2) UT =
[ 1− β

1− β(1 + g)ρ
]1/ρ

cT .

This specification cleanly separates two central preference parameters: σ, which73

governs willingness to substitute consumption over time, and γ, which governs74

aversion to risk across uncertain future states.275

II. Optimization76

Following Daniel, Litterman and Wagner (2019) and Bauer, Proistosescu and77

Wagner (2024), we embed the representative agent in a finite-horizon probability78

landscape. Our model has six decision times T0, . . . , T5 (Figure 1). At every79

node (t, s) of the tree, the agent maximizes EZ utility in (1) and chooses a node-80

specific mitigation level mt,s ∈ [0, m̄] with upper mitigation bound m̄, subject to81

climate dynamics, resource constraints, abatement costs, climate damages, and82

the technological feasibility of mitigation. Each choice commits the agent to a83

continuation policy for all downstream nodes in a given branch.84

The climate state evolves according to the impulse response function (IRF) of85

Joos et al. (2013) for atmospheric CO2 concentration C and the TCRE map-86

2See Appendix A.A1 for parameter values used in our main specification.
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Figure 1. : Optimal price paths (unconstrained baseline)

Note: The binomial non-recombining tree shows the optimal node-level shadow-price trajectory on the
stochastic decision tree used in the model. Each node represents a shadow price (in 2020 USD per ton
CO2) at the beginning of the indicated year, conditional on previous realizations of climate and economic
uncertainty.



ping from cumulative emissions to the global mean surface temperature anomaly87

θ (in ◦C above preindustrial), see Eqs. (A2)–(A3) in Appendix A.A1. Our im-88

plementation uses a carbon cycle model with persistent parameters from Joos89

et al. (2013) and uncertain effective TCRE λeff ∼ N (0.52, 0.212). For analytical90

results we employ a stylized finite-dimensional representation that preserves the91

key monotonicity properties.92

Define at node (t, s) the marginal willingness to pay Φt,s(θt,s) to avoid one93

additional ton of CO2 emitted in [Tt, Tt+1). Mitigation has node-specific marginal94

cost κ′t,s(mt,s, Lt,s) = ∂κt,s(mt,s, Lt,s)/∂mt,s.95

At decision time t, let St denote the set of nodes (states) and {πt,s}s∈St the96

probabilities of those nodes, conditional on information at the start of period t.97

For any node-level variable xt,s3, write its cross-node expectation as98

(3) xt := Et [xt,S ] =
∑
s∈St

πt,sxt,s.

We summarize period t by the expected objects Φt := Et[Φt,S ] and κ′t := Et[κ′t,S ]99

when needed (using (3)).100

The climate state at node (t, s) is (Ct,s, θt,s), with Ct,s and θt,s generated by101

Eqs. (A2)–(A3). Period-t expectations are Ct := Et[Ct,S ] and θt := Et[θt,S ]. On102

the cost side, mitigation has node-specific marginal cost κ′t,s(mt,s, Lt,s), where Lt,s103

indexes both exogenous technological progress and endogenous learning-by-doing.104

Past mitigation lowers future costs by shifting down the marginal cost curve.105

III. Carbon price paths under delay106

To test the cost of delay, we impose a zero-mitigation constraint for the first107

decision node and vary the length L of that period by shifting the initial decision108

time between 5, 10, and 15 years: L ∈ {5, 10, 15}. Each constrained run is then109

evaluated against two baseline scenarios, depending on the figure—the optimal110

3Subscript (t, s) denotes a node-level object; subscript t alone denotes its period-t expectation across
s ∈ St with weights πt,s.
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expected price at the same L, and one common L = 10 baseline. Figure 2 shows111

the resulting optimal carbon price paths in expectation over time. We here find112

that the carbon price paths in expectation of each delayed scenario lie above the113

baseline scenario’s levels.4114

If the optimum at time Tt is interior (i.e., m?
t,s ∈ (0, m̄) for all s ∈ St) and115

baseline emissions Et > 0, the first–order condition at each node equates the116

node–specific marginal abatement cost to the node–specific marginal damage:117

(4) τt,s := κ′t,s

(
m?
t,s(θt,s, Lt,s), Lt,s

)
= Φt,s(θt,s), s ∈ St.

where κ′t,s(mt,s, Lt,s) = ∂κt,s/∂mt,s. We summarize the decision period by the118

expected carbon price,119

(5) τt := Et[τt,S ] = Et
[
Φt,S(θt,S)

]
=
∑
s∈St

πt,s Φt,s(θt,s),

which is the probability–weighted average across all nodes at time t. Learn-120

ing–by–doing and exogenous technological progress enter through Lt,s, shifting121

κ′t,s and thereby altering both the node–level prices τt,s and the expected price τt.122

For period-level values, define the expected total mitigation cost and expected123

marginal abatement cost as κt := Et[κt,S ] and κ′t := Et[κ′t,S ]. Note that be-124

cause mt,s is node-specific, κ′t 6= ∂κt/∂m in general. At the node level, however,125

κ′t,s(mt,s, Lt,s) = ∂κt,s(mt,s, Lt,s)/∂mt,s.126

Delaying mitigation creates a deviation from optimal choice. By not allowing for127

mitigation for the first L years the world reaches the first unconstrained decision128

date T1 = L with a worse climate state: higher cumulative emissions, higher129

atmospheric CO2 across persistence reservoirs, and higher temperatures. In that130

state, marginal damages are higher than they would have been without delay, and131

the representative agent’s marginal willingness to pay to avoid one ton of CO2,132

4See Figure A1 for other outputs, like emissions and economic damages.



Figure 2. : Optimal CO2-price paths under delayed policy implementation.

Note: Six decision times are used in all runs, but the length of the first decision period is varied between
5, 10, and 15 years, while all subsequent time steps remain fixed. Each delay scenario (5 yr, 10 yr, 15 yr)
is solved as an independent run. We also show a canonical baseline scenario with a decision time at the
10-year step. The resulting carbon price paths show that postponing mitigation leads to a sharp upward
adjustment in the first active period, followed by convergence toward the optimal no-delay trajectory.

ΦL(θL), is higher than it would have been without delay.133

Worse still, delaying mitigation also means postponing learning-by-doing. Forc-134

ing mt = 0 in the early window removes that source of endogenous cost decline135

(see Proposition A.1). As a result, when the world begins to act optimally at136

T1 = L, it faces both a more fragile climate state and a less mature—more137

expensive—abatement cost curve. The representative agent’s optimal response138

is therefore to start the policy period with a higher expected carbon price than139

in the no-delay baseline, and to immediately mitigate more aggressively. This140

jump in the required expected entry carbon price is structural: it comes from141

state dependence in climate damages and from foregone technological progress,142

not from a particular calibration of parameters.143

Formally, under standard convexity of abatement costs and monotonicity of144

damages in the climate state (Appendix A.A1), the optimal expected carbon145

price at T1 = L in the delayed scenario, τdelayL , is weakly higher than the optimal146

expected carbon price at the same time in the no-delay baseline, τbaseL , with147

strict inequality whenever the no-mitigation constraint was binding. The state-148
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Table 1—: Delay-to-price elasticity at re-entry

L (years) Year τbaseL τdelayL ∆ log(τ) η(L) (%/yr)
5 2025 $182.97 $191.35 0.044810 0.896
10 2030 $181.55 $194.83 0.070607 0.706
15 2035 $184.49 $196.71 0.064150 0.428

Average 0.677

dependence logic is formalized in Proposition A.1 (Appendix A.A1).149

We summarize the expected price impact with the delay-to-price elasticity150

(6) η(L) := ∂ log τdelayL

∂L
,

which is the percent increase in the required expected entry carbon price at the151

first unconstrained decision time per additional year of forced delay. Because152

our model is solved at discrete delay lengths only, we estimate η(L) by finite153

differences using L ∈ {5, 10, 15}, i.e., η(L) ≈ (log τdelayL − log τbaseL )/L.154

Table 1 reports the resulting elasticities. For a 5-year delay, the required re-155

entry expected price rises from $182.97 to $191.35, which corresponds to about an156

0.896% higher expected price per year of delay. For 10 and 15 years of delay, the157

effect remains positive but declines to 0.706% and 0.428% per year, respectively.158

Averaging across the three scenarios yields an elasticity of about 0.677% per year.159

A simple log–linear fit of the delayed expected prices on the delay length gives a160

smaller, global elasticity of 0.276% per year (SE: 0.000487), with a 95% confidence161

interval of [0.181%, 0.372%]. This confirms Proposition A.1: In every scenario162

we consider, a binding delay raises the required expected entry carbon price.163

The elasticity is declining in L, which implies a concave delay-price relationship:164

early years of inaction are disproportionally costly, as they push the system into165

a higher-damage (and technically, low-learning) state, while additional years of166

delay add to the carbon debt at a diminishing marginal rate.167

As a robustness check, we also estimate a pooled delay-to-price elasticity across168



the three scenarios by regressing the delayed re-entry expected price on the length169

of the delay,170

(7) log(τdelayL ) = α+ ηOLSL+ εL,

which yields ̂log(τdelayL ) = 5.2417+0.0028L, with R2 = 0.97. The slope coefficient171

ηOLS = 0.0028 implies that, on average across the 5-15 year range, each extra172

year of delay raises the required expected entry carbon price by about 0.276%173

per year. The 95% confidence interval corresponds to [0.181%, 0.372%] per year.174

IV. Estimating deadweight losses (DWLs) of delay175

To quantify the societal cost of delayed action, we compute the DWL associated176

with postponing mitigation. Specifically, we determine the additional consump-177

tion in the first period required to restore lifetime utility of the representative178

agent to the level of the unconstrained (baseline) case. Denoting baseline utility179

at the root as U∗0 , first-period consumption in the delayed scenario as cD0 , and the180

expected (certainty-equivalent) future utility as CED1 := (E0[Uα1 ])1/α, we define181

the consumption-equivalent DWL φ ≥ 0 implicitly by182

(8) U∗0 =
(
(1− β)

(
(1 + φ)cD0

)ρ + β(CED1 )ρ
)1/ρ

.

Solving for φ yields5183

(9) φ =
[

(U∗0 )ρ − β(CED1 )ρ

(1− β)(cD0 )ρ

]1/ρ

− 1, (ρ 6= 0).

Applying this metric, we find that the DWL of delayed mitigation rises with the184

duration of inaction (Table 2). In our main specification, enforced bans on mitiga-185

tion force higher entry expected carbon prices at T1 = L, which we capture with186

the delay-to-price elasticity η(L); that higher required expected starting price187

5In the case of ρ = 0, we apply the Cobb-Douglas limit as derived in Appendix A.A2
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Table 2—: Social cost of delaying climate action under alternative baselines

First
period length
L (years)

Canonical baseline Aligned baseline Difference
(p.p.)

DWL
(%)

DWL
(2020 USD tn)

DWL
(%)

DWL
(2020 USD tn)

5 14.24 8.2 13.00 7.5 −1.24
10 21.82 12.6 21.87 12.7 +0.05
15 32.21 18.7 33.10 19.1 +0.89

Note: Deadweight loss (DWL) represents the consumption-equivalent compensation required for lifetime
utility in the delayed-mitigation scenario to equal that in the corresponding baseline. The canonical
baseline fixes the first decision period at 10 years across all runs to enable direct DWL comparisons. The
aligned baseline matches each delay scenario to an unconstrained run with the same decision timeline
(e.g., 5-year delay vs. 5-year baseline). The minor difference for the 10-year scenario reflects stochastic
draws in the model’s Monte Carlo simulations. Dollar values are in trillions of 2020 USD.

translates directly into a larger consumption-equivalent DWL φ. In our main188

specification, banning mitigation for five years, ten years, and fifteen years pro-189

duces a DWL of delay of roughly 14%, 22%, and 32% of first-period consumption,190

respectively. In monetary terms, these correspond to about $8.3tn, $12.8tn, and191

$18.8tn in one-time global compensation at the start of the policy window. Each192

additional year of delay raises the DWL by about $1.05 trillion per year over the193

5–15 year range, i.e., roughly 1.8 percentage points of first-period consumption194

per year. A simple log-log fit implies φ(L) ∝ L0.73, indicating sub-linear scaling195

and modestly declining marginal losses as the delay lengthens.196

These DWLs increase with delay length, but not linearly. Longer bans on197

mitigation give the representative agent at the next decision time a more polluted198

atmosphere and therefore require a higher expected starting carbon price at T1 =199

L under our standard assumptions. The agent then responds by catching up:200

once mitigation is finally allowed, the optimal policy sharply raises the expected201

carbon price at T1 = L relative to the no-delay baseline and moves immediately202

to very aggressive abatement. This catch-up behavior is economically painful in203

the short run, which shows up in φ(L), but it stabilizes the long run by limiting204

further deterioration of the climate-economy state. Numerically, in our baseline205



calibration φ(L) rises quickly between 0 and 10 years of delay and continues to206

rise thereafter, though at a slower rate (Table 2). In our benchmark runs, then,207

the exogenously induced delay has a clearly measurable cost: for the 5-15 year208

range we study, every additional year without mitigation forces the social planner209

to start the policy period with an expected carbon price between about 0.4 and210

0.9 percent higher than it otherwise would have been, with an average of 0.7211

percent. The regression-based estimate is smaller because it smooths across the212

three scenarios, but it preserves the sign and the basic message: delay makes the213

first feasible expected carbon price higher.214

Figure 3 examines the consequences of relaxing the stringency of the first-period215

policy constraint by imposing an upper bound m(t) ≤ p on the mitigation rate216

over the initial interval t ∈ [0, L], where p ∈ [0, 1] denotes the maximum share217

of baseline emissions that may be abated. For caps close to the unconstrained218

solution, the DWL increases approximately quadratically in the cap’s tightness,219

with the level of the loss rising in the duration of the delay L.220

This quadratic relationship provides a simple heuristic for why even limited221

early mitigation recovers a disproportionate fraction of welfare, and why DWL222

converges rapidly to zero as p approaches the smallest nonbinding cap (and the223

constraint ceases to bind). Conversely, the marginal welfare gain from relaxing224

the constraint is decreasing in p.225

V. Evaluating parameter importance226

Understanding why delay is so costly requires unpacking which structural prim-227

itives make the carbon-debt difference τdelayL −τbaseL and its elasticity as per Equa-228

tion (6) large, and therefore drive the DWL penalty φ. Figure 4 offers a first look,229

plotting the DWL of delay against four structural drivers: EIS, PRTP, exogenous230

technological change, and endogenous learning. Lines show within-delay OLS fits231

of the expected DWL on the parameter value. The fitted Gaussian curves show232

the distribution of φ(L) for the different delay lengths given our parameter space.233



ECONOMIC DAMAGES OF DELAYED CLIMATE ACTION 13

Figure 3. : DWL as a function of allowed partial mitigation p in the first period.

Note: Policies are compared under the aligned baseline in the main specification (see Appendix A.A1).
Small variation in smoothness are due to the stochastic nature of the model.

The central result is that impatience dominates. When societies heavily discount234

the future, no amount of technological progress or learning can offset the welfare235

lost from postponing mitigation.236

Parameter sensitivities in Table 3 show which economic mechanisms drive the237

DWL of delaying climate action in a multivariate regression, i.e., they show partial238

OLS effects within our parameter grid. We estimate these effects over a broad239

random draw of the model’s structural parameters, each sampled independently240

from its prior probability distribution. This approach ensures that coefficients241

capture partial effects across the full range of plausible economic and technological242

states. Each parameter thus maps a structural assumption into an economic243

intuition about risk, time, and technology.244

Higher risk aversion (RA) raises the shadow value of insurance against uncertain245

climate damages. A one-point increase in γ raises the DWL by roughly 0.25246

percentage points, or about $147 billion. This result is highly significant. Agents247

who are risk-averse value early mitigation more strongly as protection against248

catastrophic tail outcomes. Nonetheless, RA across states of nature matters less249

than aversion across time (see EIS): what dominates is not which climate future250



Figure 4. : Variance decomposition of deadweight losses (DWLs) by structural
parameters.

Note: The figure truncates the vertical axis at 30% to improve visibility. This range contains approxi-
mately 95% of observations.

occurs but how long society waits to act.251

The EIS is the single strongest behavioral determinant of delay costs. A 0.1252

increase in σ (within the sampled range of 0.55-1.1) raises the DWL by about253

5%, or $3 trillion (p < 0.001). In the unconstrained baseline, such a society is254

willing to sacrifice some near-term consumption (via costly early mitigation) in255

exchange for much lower climate damages later. A binding delay prevents that256

optimal intertemporal trade, so the DWL φ(L) from delay is larger when σ is257

high.258
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Table 3—: Regression results: determinants of deadweight loss (DWL) and miti-
gation delay outcomes

(1) (2) (3)
Const -0.0457** -10.5381 -6301.7279

(0.0199) (8.3528) (4994.9064)
RA (γ) 0.0046*** 0.2454*** 146.7690***

(0.0002) (0.0847) (50.6514)
EIS (σ) 0.4767*** 49.7372*** 29742.5249***

(0.0057) (2.5267) (1510.9441)
Tech. change (exog.) -1.4735*** -73.5360* -43974.0590*

(0.0935) (38.5723) (23066.0244)
Tech. learning (endo.) 0.8882*** 63.7416* 38117.0615*

(0.0883) (34.3644) (20549.6858)
PRTP (δ) -23.5410*** -2556.3668*** -1528691.37***

(0.2509) (111.3807) (66604.948)
log(Backstop premium) -0.0009 -0.6235 -372.8457

(0.0020) (0.8472) (506.6172)
Cons. growth -3.5662*** -57.4224 -34338.2212

(0.1814) (77.6601) (46440.2569)
Delay 10 0.0469*** 3.4608*** 2069.5203***

(0.0015) (0.3973) (237.5642)
Delay 15 0.1088*** 8.5027*** 5084.5728***

(0.0021) (0.7598) (454.3852)
R2 0.7639 0.2034 0.2034
Adj. R2 0.7636 0.2026 0.2026
N 8830 8830 8830

Note: Results from an OLS regression with time fixed effects (Delay 10 and 15). Heteroskedasticity-
robust standard errors in parentheses. All specifications include the same nine regressors. Delay 10 and
Delay 15 are indicator variables for the different delay periods and reference delay 5. The dependent
variable in column (1) is the utility loss (in %) from delaying optimal climate policy. Column (2) uses
the consumption-equivalent DWL (φ(L) in %), and column (3) uses the absolute DWL in billions of 2020
USD.
*** p < 0.01, ** p < 0.05, * p < 0.1.

With a negative coefficient significant at the 10% level, faster exogenous tech-259

nological change cushions the economy against delay. A one percentage-point260

increase in the exogenous rate of technological change reduces DWL by roughly261

0.7%, or about $440 billion. Independent innovation lowers future abatement262

costs and partially offsets delay. When technology improves independently of263



early action, postponement hurts less because future abatement is cheaper. Con-264

versely, technological stagnation amplifies the cost of delay.265

Endogenous technological learning has a positive coefficient that is significant266

at the 10% level with similar magnitude to exogenous change. A one percentage-267

point increase in learning intensity raises DWL by about 0.6%, or $380 billion.268

The mechanism is path dependence: delaying mitigation slows learning-by-doing,269

delaying cost reductions and locking in higher future abatement costs. Inaction270

today undermines tomorrow’s productivity gains.271

PRTP (δ) has a large and statistically significant effect. The coefficient im-272

plies that raising δ by 1 percentage point lowers DWL by roughly 25.6 percentage273

points, or $ 15.3 trillion. More impatient societies (higher δ, lower β) care rela-274

tively less about distant future damages. In our regressions, this shows up as a275

lower measured DWL from delay. Conversely, patient societies (low δ) view delay276

as extremely expensive. This confirms that how we value time, not technology or277

static risk, is a first-order driver of the DWL variation across scenarios.278

The backstop premium, that is, the long-run cost ceiling for zero-carbon tech-279

nology, is statistically insignificant and economically negligible. A 1% change in280

the backstop price shifts DWL by less than 0.01%, or about $0.4 billion. In the281

model, this parameter adds a surcharge to the marginal cost of over-mitigation,282

that is, for mitigation levels above 100%, corresponding to net carbon removal.283

This captures the real-world cost gap between eliminating emissions and achieving284

net-negative emissions through technologies such as direct air capture. Because285

optimal policy paths in our delay experiments rarely enter the over-mitigation286

regime, the DWL effects of the premium remain small.287

Consumption growth enters negatively. A 1-percentage-point faster consumption-288

growth rate reduces the DWL by about 0.6%, or $340 billion. Even though it is289

not significant, the sign aligns with the theoretical expectation that faster growth290

decreases the DWL of delay.291

Both delay length indicator variables are positive and highly significant. Ex-292
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tending the first decision period from 5 to 10 years raises the DWL by about293

3.5%, or $2.1 trillion; extending to 15 years increases them by roughly 8.5%, or294

$5.1 trillion. The rise is steep but concave, consistent with the model’s adaptive295

catch-up dynamics: once mitigation begins, expected carbon prices jump sharply,296

partially—but never fully—recovering lost welfare.297

Taken together, our analysis shows that the economics of delay is fundamentally298

about time preference and intertemporal trade-offs: Impatience and substitution,299

not technology or risk, explain most of the DWL of inaction, underscoring that300

the true price of delay is paid in lost time. Optimal carbon price paths and DWL301

results under different sets of parameter assumption are in Figures A3 and A4.302
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Appendix386

A1. Model and dynamics387

This section formally describes the model setup and proves Proposition A.1.388

Decisions occur on a finite set of times T0, T1, . . . , TN , measured in calendar years389

(e.g., T0 = 2020, T1 ∈ {2025, 2030, 2035}, etc.). At each decision time Tt and390

node, the social planner (our representative agent) chooses the mitigation rate391

mt ∈ [0, m̄] that applies over the entire subsequent interval [Tt, Tt+1). Values392

mt > 1 are net removal of CO2 (direct air capture and related negative-emissions393

technologies) at a backstop premium. In our benchmark calibration, m̄ = 1.5 and394

the backstop premium is $10,000.395

Following Daniel, Litterman andWagner (2019), we embed the planner in a non-396

recombining binomial tree in which each node inherits a current fragility state that397

indexes how severe climate damages have turned out so far. The high-fragility398

branches correspond to high realized damages (or bad climate/economic states),399

and the low-fragility branch to more benign outcomes. Uncertainty therefore400

resolves gradually along the tree rather than all at once. At each node, the agent401

re-optimizes given the currently realized state.402

This structure matters for two reasons. First, it makes the problem explic-403

itly stochastic as future consumption, temperature, and damages differ across404

branches. Second, it allows us to separate aversion to risk across time from405

aversion to risk across states of nature. The same structure also lets us impose406

politically relevant constraints on early climate policy: we can constrain the agent407

not to mitigate for an initial window and then ask how the system behaves once408

the constraint is lifted.409

We analyze delays in mitigation by imposing an exogenous no-mitigation period410

of length L years. Formally, for a given L ∈ {5, 10, 15}, we impose mt = 0 for all411

decision times Tt < L, and relax this constraint for Tt ≥ L.6 We compare each412

6In our standard calibration, this corresponds to constraining T0 only.
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scenario to a common unconstrained baseline with a node at Tt = 10 in which413

the planner is free to choose mt at all decision times.414

Preferences follow a standard Epstein-Zin recursive specification as in Equa-415

tion (1) with terminal utility given by Equation (2). For our main specification,416

parameter values are as follows: PRTP(δ) = 0.002; EIS(σ) = 0.833; RA(γ) = 10;417

consumption growth p.a. = 0.02; exog. tech change = 0.015; endo. tech learning =418

0; baseline emissions = SSP2; backstop premium = 10 000.419

Emissions, climate dynamics, costs, and damages420

For expositional clarity, throughout this subsection we fix an arbitrary realiza-421

tion (i.e., path) of uncertainty and suppress state indices; all objects (mt, θt, Lt, κt,Φt, τt)422

are thus defined along a single path in our binomial tree.423

Let Et > 0 denote the baseline (business-as-usual) CO2 emissions over the424

interval [Tt, Tt+1), based on a reference socioeconomic pathway (e.g., SSP2). The425

planner can abate a fraction mt ∈ [0, m̄] of those baseline emissions, so realized426

emissions over that interval are427

(A1) et = (1−mt)Et.

The climate state at time Tt is characterized by two key variables: atmospheric428

CO2 concentration Ct (in ppm) and temperature anomaly θt (in ◦C above prein-429

dustrial).430

Atmospheric CO2 concentration Ct evolves as the convolution of past emissions431

with the impulse response function (IRF) of the carbon cycle, following Joos et al.432

(2013):433

(A2) Ct = C0 + χ

∫ t

0
Ψ(t− s)es ds, where Ψ(s) = a0 +

3∑
i=1

ai exp(−s/bi),

with χ = 1/7.8 = 0.128 ppm/GtCO2 and coefficients a0 = 0.2173, a1 = 0.2240,434



a2 = 0.2824, a3 = 0.2763, and time constants b1 = 394.4, b2 = 36.54, b3 = 4.304435

years. All ai, bi > 0, so concentrations are strictly increasing in cumulative436

emissions. These parameters capture the multiple carbon-cycle reservoirs (at-437

mosphere, mixed-layer ocean, deep ocean, biosphere) and the long-lived airborne438

fraction a0.439

The global mean surface temperature anomaly θt is linked to cumulative emis-440

sions through the Transient Climate Response to Cumulative Emissions (TCRE)441

framework following AR6:442

(A3) θt = λeff

∫ t

0
eu du, λeff := λ

1− fnc
.

Here eu denotes CO2 emissions at time u measured in thousand gigatonnes of443

CO2 per year (TtCO2/yr), so that
∫ t

0 eu du is cumulative emissions in thousands444

GtCO2. The parameter λ > 0 (in K per 1000 GtCO2) is the TCRE for CO2-445

only warming, while fnc ∈ (0, 1) scales in the contribution from non-CO2 forcing.446

Following Bauer, Proistosescu and Wagner (2024), we take the effective TCRE to447

be λeff ∼ N (0.52, 0.212) K per TtCO2.448

This formulation implies three key properties for our analytical results:449

(i) Ct and θt are strictly increasing in the emissions path {es}s≤t because450

Ψ(ζ) ≥ 0 and λeff > 0.451

(ii) The multi-timescale IRF ensures that past emissions affect concentrations452

far into the future, with fraction a0 remaining indefinitely.453

(iii) High emissions in [Ti, Ti+1) permanently elevate both Ct and θt for all sub-454

sequent times.455

Based on Burke, Davis and Diffenbaugh (2018); Rose, Diaz and Blanford (2017);456

Howard and Sterner (2017); Dietz et al. (2021), damages are represented as the457

sum of an aggregate temperature-based loss component and an additional com-458
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ponent from climate tipping points:459

(A4) dt = D(k)(θt) + dtp(θt), D(k)(θt) = δ
(k)
1 θt + δ

(k)
2 θ2

t

where k ∈ {statistical, structural, meta} indexes the aggregate damage family,460

and dtp(θt) captures the expected effect of climate tipping events. The coefficients461

(δ(k)
1 , δ

(k)
2 ) were calibrated by (Bauer, Proistosescu and Wagner, 2024) from the462

respective sources and may vary across periods7, but for any fixed t, each D(k) is463

quadratic in θt and increasing on the temperature range we study (0-6◦C).464

The structural IAM function (Rose, Diaz and Blanford, 2017) and the meta-465

analytic function (Howard and Sterner, 2017) are convex (δ(·)
2,t > 0) over our466

calibration. The statistical function (Burke, Hsiang and Miguel, 2015) is convex467

through mid-century and becomes mildly concave in late-century (δ(stat)
2,t < 0 for t468

after 2100) but remains increasing on the relevant temperature range. The tipping469

component dtp(θt) is also quadratic with positive curvature (Dietz et al., 2021),470

so it raises marginal damages at higher temperatures. To not rely too heavily471

on single estimates, our main specification averages across the three aggregate472

families with equal probability and adds the tipping component in every draw.473

Hence, we define the model-averaged damages at time t as474

(A5) D̄(θt) := Ek
[
D(k)(θt) + dtp(θt)

]
∀k,

where the expectation is over the three aggregate families with equal weights. In475

our main specification, this means D̄(θt) is twice continuously differentiable and476

satisfies477

(A6) dD̄(θt)
dθt

> 0 and d2D̄(θt)
dθ2
t

≥ 0

7The statistical specification from (Burke, Hsiang and Miguel, 2015), for example, uses distinct mid-
and end-century calibration.



for temperatures between 0 and 6 ◦C.478

The period-t marginal abatement cost curve (MACC) follows the exponential479

form and is calibrated to IPCC AR6 Working Group III data (Intergovernmen-480

tal Panel on Climate Change , IPCC), consistent with Bauer, Proistosescu and481

Wagner (2024). For a mitigation rate mt ∈ [0, m̄] and technology and learning482

state Lt, which captures both exogenous and endogenous technological progress,483

we specify484

(A7) τt(mt, Lt) =


Ltτ0

(
eξmt − 1

)
, 0 ≤ mt ≤ 1,

Lt(τ0 + τprem)
(
eξmt − 1

)
, mt > 1,

where τ0 > 0 and ξ > 0 are level and curvature parameters, and τprem > 0 is a485

backstop premium representing the additional cost of net-negative emissions (e.g.,486

direct air capture). The corresponding total mitigation cost function is obtained487

by integrating the marginal cost curve for mt ≤ 1,488

(A8) κt(mt, Lt) = Lt τ0

(
eξmt − 1

ξ
−mt

)
, (0 ≤ mt ≤ 1),

and analogously with τ0 + τprem for mt > 1.8 On each regime mt ∈ [0, 1] and489

mt > 1, the function κt(·, ·) is twice continuously differentiable, strictly increasing490

and convex in mt, and weakly increasing in the learning factor Lt. Higher Lt491

indicates less technological progress and therefore higher costs, while lower Lt492

reflects learning-by-doing and innovation that shift the MACC downward.493

The learning factor Lt evolves according to cumulative mitigation experience494

and exogenous technological improvement. Hence,495

(A9) Lt =
(
1− ψ0 − ψ1Xt

)(Yt−Yref),

where Yt is the calendar year at decision time Tt, Yref is the reference year used496

8Note that this creates a level jump at mt = 1.
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for calibration (2030 in our baseline), and parameters ψ0 ≥ 0 and ψ1 ≥ 0 capture497

exogenous and endogenous technological progress, respectively. The term Xt498

represents the weighted average mitigation up to time t,499

(A10) Xt :=
∫ t

0 m(ζ)E(ζ)dζ∫ t
0 E(ζ)dζ

,

so that stronger cumulative mitigation or faster exogenous innovation lowers Lt500

and thereby reduces future abatement costs.501

Let yt be gross resources available for consumption at time Tt. Actual con-502

sumption is then determined by503

(A11) ct = yt − κt(mt, Lt)− dt(θt).

Delay thus reduces consumption through a more deteriorated climate state caus-504

ing higher damages, and slower cost decline raising mitigation costs.505

Optimal expected carbon prices506

To compare policies at a given decision time t, we now take expectations across507

nodes, as in the main text (see Equation (3)).508

Proposition A.1. (Delay raises the expected entry carbon price) Assume baseline509

emissions are strictly positive in all periods prior to T1, i.e., Et > 0 for all510

Tt < T1. Suppose:511

(i) The delay constraint is binding in the baseline period, i.e., there exists t < T1512

with mbase
t > 0, while in the delayed scenario mdelay

t = 0 for all Tt < T1;513

(ii) The carbon-cycle and TCRE mappings in (A2)–(A3) satisfy Ψ(ζ) ≥ 0 and514

λeff > 0, so climate dynamics are monotone;515

(iii) Model-averaged damages are increasing and weakly convex: D̄′(θ) > 0 and516

D̄′′(θ) ≥ 0 (cf. (A5));517



(iv) The optimal mT1 is interior in both the base and delay scenarios.518

Then, for every node s ∈ ST1, τ
delay
T1,s

≥ τ baseT1,s
, and therefore, taking expectations519

across nodes,520

(A12) τdelay1 ≥ τ base1 ,

with strict inequality whenever θdelayT1,s
> θbaseT1,s

on a set of nodes with positive prob-521

ability (equivalently, when E1[θdelay1,S ] > E1[θbase1,S ]).522

Proof. Fix an arbitrary node s ∈ ST1 and consider the unique history (path) lead-523

ing to s under the baseline and delayed scenarios. By construction, mdelay
t = 0 for524

all Tt < T1, while by (i) there exists some t < T1 with mbase
t > 0. From (A1), for525

at least one such t we have edelayt = (1−0)Et = Et > (1−mbase
t )Et = ebaset . Hence526

cumulative emissions up to T1 are (weakly) higher along the delayed path. By (ii)527

and the monotonicity of the carbon-cycle IRF and TCRE mappings (A2)–(A3),528

higher past emissions imply a (weakly) worse climate state at T1: Cdelay
T1,s

≥ Cbase
T1,s

529

and θdelayT1,s
≥ θbaseT1,s

, with strict inequality if baseline mitigation was positive on530

a nonzero set. By (iii), marginal damages are increasing in temperature, so531

ΦT1,s(θ
delay
T1,s

) ≥ ΦT1,s(θbaseT1,s
), strictly when θdelayT1,s

> θbaseT1,s
. Under the interior first-532

order condition at node (T1, s), τdelayT1,s
= ΦT1,s(θ

delay
T1,s

) and τbaseT1,s
= ΦT1,s(θbaseT1,s

),533

which implies the path-wise inequality τdelayT1,s
≥ τbaseT1,s

. Taking expectations across534

nodes yields τdelay1 = ET1 [τdelayT1,S
] ≥ ET1 [τbaseT1,S

] = τbase1 , with strict inequality if535

θdelayT1,s
> θbaseT1,s

on a set of nodes with positive probability. Finally, delay implies536

a smaller technology stock (higher LT1,s) because learning-by-doing accumulates537

more slowly when early mitigation is zero. By (A9), Ldelay
T1,s

≥ Lbase
T1,s

, and since mit-538

igation costs are increasing in Lt, κT1,s(mT1,s, L
delay
T1,s

) ≥ κT1,s(mT1,s, L
base
T1,s

). Hence539

the total resource cost under delay is weakly higher, reinforcing the conclusion540

that τdelay1 ≥ τbase1 . �541
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Table A1—: OLS estimate of the delay-to-price elasticity

(1)
L (years) 0.002761

(0.000487)
Constant 5.241717

(0.004929)
R2 0.969818
Observations 3

Note: Dependent variable: log(τdelay
L ). Robust standard errors in parentheses. 95% confidence interval

for the slope: [0.001806, 0.003715], i.e. [0.181%, 0.372%] per year.

Regression results delay-to-price elasticity542

A2. Analytical solutions543

Cobb-Douglas limit of the EZ aggregator and the first periodic544

compensation545

Solving for the consumption–equivalent DWL of delay when ρ 6= 0 is done in546

the main text. Here we consider the Cobb–Douglas case ρ = 0 (i.e. σ = 1).547

As ρ → 0, the Epstein–Zin aggregator U0 =
(
(1 − β)cρ0 + β CEρ1

)1/ρ converges548

to the geometric (Cobb–Douglas) form U0 = c 1−β
0 CEβ

1 . Let the delayed path549

have first–period consumption cD0 and continuation certainty equivalent CED1 .550

We scale the first–period consumption by (1 + φ) and require the compensated551

delayed utility to equal the baseline utility U?0 : U?0 =
(
(1 + φ)cD0

)1−β(CED1 )β.552

Solving for φ gives the closed-form consumption-equivalent transfer:553

(A13) φCD =
[

U?0
(cD0 ) 1−β (CED1 )β

] 1
1−β

− 1.

A3. Extended outputs554



Figure A1. : Different outputs of the single-period optimal scenarios with delay
periods L ∈ {5, 10, 15}.

Note: A: Expected carbon prices in 2020 $/tCO2. B: Expected abatement in %. C: Emissions in
GtCO2/year with SSP2 emissions baseline. D: Temperature in degrees Celsius. E: CO2 concentration
in ppm. F: Economic damages in % of Gross Domestic Product.
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(a) Optimal price tree with 5-year delay.

(b) Optimal price tree with 10-year delay.

Figure A2. : Decision trees for delayed runs.



(c) Optimal price tree with 15-year delay.

Figure A2. : Decision trees for delayed runs (continued).
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Figure A3. : Optimal carbon price paths under different parameter combinations.

Note: The legends call out the changed parameter in each row. All other parameters follow the main
specification (base, see Appendix A.A1).



Figure A4. : DWL φ (in %) under different parameter combinations.

Note: The x-axes describe the changed parameters for each graph. All other parameters follow the main
specification (base, see Appendix A.A1).


