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Knowing how future climate damages might be distributed across time and
space is an important research frontier and policy issue for climate scientists and
economists alike. Projections of endogenous climate damages in macroeconomic
models [Ferndndez-Villaverde et al., 2024] typically rely on reduced-form relation-
ships between climate change and the macro-economy, which are generally based
on annual climatic statistics—e.g. mean annual temperatures. Furthermore,
models are generally aggregated for that climate variable to be global—mean an-
nual global temperatures. In these integrated climate-economy models, carbon
emissions are a by-product of regional economic activities. A reduced-form cli-
mate module captures endogenously how these carbon emissions turn into global
annual mean temperature anomalies, from which regional annual mean tempera-
ture anomalies can be statistically down-scaled through a simple linear and time-
invariant factor, a process also called ‘pattern scaling’. Lastly, the regional phys-
ical impacts are interacted with dose-response functions estimated on global data
to measure the economic impacts of endogenous climate change. These macroe-
conomic models are either global [Nordhaus, 1994, Barrage and Nordhaus, 2024,
Cai and Lontzek, 2019, Traeger, 2023], regional [Nordhaus and Yang, 1996] or
gridded, as in spatial integrated assessment modelling (IAM), e.g. Krusell and
Smith Jr [2022], Cruz and Rossi-Hansberg [2024] and Desmet and Rossi-Hansberg
[2024].

The underlying assumption behind these approaches is that the shapes of the
spatio-temporal distributions of mean temperatures do not matter. Across time,
the intra-annual shape of the distribution of daily mean temperature is assumed
to remain constant: temperature increases due to climate change are shape-
preserving increases in annual mean. Across space, an average increase in tem-
perature at global level is assumed to affect the regional annual distribution by
a linear and time-invariant down-scaling factor such as the regional transient re-

sponse to cumulative emissions [Leduc et al., 2016].

The reality of future regional weather changes, however, is more complex, for
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CLIMATE SHIFT UNCERTAINTY 3

two main reasons. First, natural climate variability over time and space, both
from external (e.g. solar cycles) and internal factors (e.g. El Nino-La Nina), might
distort future temperature distributions beyond the annual mean [Schwarzwald
and Lenssen, 2022]. Second and more fundamentally, the process determining the
shape of the weather distribution within a given year for a given regional mean
temperature might not be stationary, so that time-invariant relations between
annual averages and the intra-annual distribution of weather only imperfectly
reflect regional-specific shifts in warming patterns. In North-West Europe, the
hottest summer days are warming twice as fast as mean summer days [Patterson,
2023]. Cold extremes are anticipated to warm at a faster rate than both hot
extremes and average temperatures for much of the Northern Hemisphere [Gross
et al., 2020]. Hot days over tropical land warm substantially more than the av-
erage day: for example, warming of the hottest 5% of land days is 21% larger
than the time-mean warming averaged across models [Byrne, 2021]. That opens
the question around the ‘right’ level of spatial and temporal aggregation for pro-
jecting future impacts. Aggregation has advantages, as it comes with statistical
robustness, clear identification of causal relationships, and numerical tractability
in models where anomaly in climate results from endogenous anthropogenic emis-
sions; it also has shortcomings, such as the risk of averaging contradictory effects

between regions both in terms of damage and warming patterns.

Instead of modeling climate change stemming from anthropogenic carbon emis-
sions as an endogenous process, some IAMs use spatially disaggregated projections
from global circulation models to infer the costs of climate change with adapting
agents [Rudik et al., 2022, Bilal and Rossi-Hansberg, 2023]. In these models,
which incorporate credible intra-annual climate projections, climate change re-
mains exogenous to economic activities. As a result, the estimates from the two
bodies of literature—endogenous and exogenous—have evolved in parallel, yet the
effects of this divergence on the aggregate and distributional estimates of climate

impacts remain unclear. We aim to shed light on this apparent gap by testing



63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

the impact of including regional projections that sample changes in the entire

intra-annual distribution of temperatures.

To disentangle these spatial and temporal effects, we follow a two-step approach.
First, we switch from annual average temperatures to the complete daily tempera-
ture distribution over a year and show how this affects the heterogeneous distribu-
tion of warming patterns between regions, compared to a setting where we assume
a shape-preserving shift in mean annual temperatures under a synthetic changing
climate. Second, we interact these regional-specific shifts in warming patterns
with intra-annual damage patterns, comparing them to a setting where damage
are inferred from annual mean temperature. Building on work on the non-linear
effects of temperature on economic activity using temperature bins [Dell et al.,
2014, Hsiang, 2016, Auffhammer, 2018], we use non-linear dose response functions
in intra-annual temperatures to capture some of the regional idiosyncrasies in the
climate-society relationship by considering changes in the intra-annual shape of
temperature distributions for each aggregate Koppen-Geiger climatic zone: arid,

continental, polar, temperate, tropical.

We further probe the consequences of this spatio-temporal aggregation of cli-
mate projections on quantifying the uncertainty surrounding any best-guess esti-
mate of future climate damages. Uncertainties abound [Rising et al., 2022, Moore
et al., 2024, Waidelich et al., 2024]. The quantifiable variance of future projec-
tions of climate impacts is affected by scenario uncertainty (differences in Shared
Socioeconomic Pathways,SSPs), model uncertainty (differences in Earth System
Models'—ESMs’—responses to the SSPs), internal variability (spatio-temporally,
due to the chaotic nature of the climate and due to regional differences that
may be hidden by regional aggregation), choices made in post-processing or bias-
correcting ESM output (including how finely to apply projected changes in cli-
mate distributions from ESMs), regression uncertainty from the dose-response
functions, and differences between observational data products used to fit the

dose-response function and act as a baseline to which future ESM output is com-
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pared. Historically, many studies have relied on global annual average climate
variables to estimate and project climate damages, thereby overlooking signifi-
cant sources of internal variability. These include regional disparities in climate
conditions and the tendency to extract only mean changes from ESM projections.
This limitation is further exacerbated by the inherent constraints of endogenous
reduced-form climate models, which struggle to capture future changes in intra-
annual weather patterns—an aspect that might be better addressed through the
development of climate emulators [Eftekhari et al., 2024]. We focus on two of these
uncertainties and their interaction: the sensitivity of economic impact projections
to an improved sampling of internal variability (through capturing regional dif-
ferences in impacts) and an improved treatment of ESM output (by capturing
changes in the full shape of the temperature distribution instead of annual aver-
ages). We further uncover some of the model uncertainties between ESMs using
the full shape of warming patterns that is usually reduced by the aggregation
procedure on a global and annual scale. Lastly, we provide a framework based
on mean temperature distributions that can be applied to other climate data, for
instance precipitation patterns [Waidelich et al., 2024], and a quantification to
show how much the regional-specific shift in the shape of warming patterns in-
teracting with intra-annual damage patterns matters empirically. We do so both
at the aggregate level and in the distribution of impacts, with the year 2050 as a

case study.

We also contribute to the recent literature and ongoing debate on the appropri-
ate estimation of future climate change damages. In a sense, we take the opposite
approach of Bilal and Kénzig [2024], who deliberately avoid disaggregation and
rely on global annual average temperature to infer future damages. While we
share their concern that time fixed effects may wash out the common component
of a shock in the estimation—thereby focusing only on the idiosyncratic regional
part—we take the opposite stance by zooming in on intra-annual weather changes

both for the estimation and for climate projections. Our aim is to highlight the
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importance of accounting for both intra-annual variability and regional hetero-
geneity when assessing idiosyncratic climate damages. Our core intuition is akin
to a Jensen’s inequality argument: if intra-annual damages are convex in tem-
perature, then annual averages may be misleading (i.e., temporal heterogeneity
matters). A next step beyond our current approach would be to develop a frame-
work that preserves both the idiosyncratic and common components of climate
shocks in estimation and aggregation, while also moving beyond annual means
and the global scale to fully capture the spatial and temporal heterogeneity of

climate impacts from past weather shocks [Lemoine, 2018].

All this yields two main conclusions. First, switching from annual global mean
temperature to the regional annual distribution of daily mean temperatures af-
fects the magnitude of the estimates of economic damages: in 2050, using damage
patterns interacted with the shift in the whole shape of the distribution of daily
temperatures yields climate damage at the global scale that are around 25% larger
than the damage obtained under the assumption of a shape-preserving shift in
annual mean daily temperature. Standard aggregation leads to an underestima-
tion of future climate damages. We test this result across a range of SSPs, from
the least (SSP1-2.6) to the most carbon-intensive (SSP5-8.5), finding a range of
of 21-28%. Second, we show that the distributional effect is far from clear-cut.
Uncertainty in the change in the shape of the temperature distributions has wildly
different effects across regions. In particular, we show that the omitted damages
are not primarily driven by tail effects. Extreme events alone do not explain the
intra-annual pattern of damages; rather, the entire distribution of temperatures
plays a critical role. This effect holds consistently across different temperature

pathways, both at the regional level and in the aggregate.
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I. Climate and economic data

A.  Warming patterns

Our main concern is that shifts in the intra-annual distribution of daily mean
temperatures may not be adequately captured by changes in annual mean temper-
ature, which preserve the overall shape of seasonal warming patterns. On Figure
1 below, we illustrate this concern for two scenarios, each involving a +2°C in-
crease in annual mean temperature. These scenarios are motivated by two stylized
empirical regularities observed over recent decades. First, cold extremes across
North America have warmed substantially faster than the winter mean temper-
ature since 1980 [Blackport and Fyfe, 2024]. Second, the hottest summer days
in North-West Europe have warmed roughly twice as fast as mean summer days
since 1960 [Patterson, 2023]. In the illustrative figures below, North-West Eu-
rope is shown on the left panel and North America on the right. The top panel
plots damage functions against the frequency of days in each temperature bin.
For exposition, we use an inverted bell-shaped damage function, where marginal
damages rise at both lower and higher temperature levels. The middle panel
shows the histogram of daily temperatures for three cases: (i) the historical cli-
mate (green), (ii) a +2°C mean-preserving shift in the temperature distribution
(blue), and (iii) a +2°C mean increase with a change in shape, characterized by a
heavier hot tail (orange, left panel) or a reduced cold tail (dark red, right panel).
The red dotted line represents the difference in frequency (days per temperature
bin) between the shape-changing and shape-preserving +2°C scenarios, where the
latter assumes a constant intra-annual temperature distribution. The difference
between these two distributions highlights omitted days, i.e. specific temperature
exposures that are not captured when impacts are assessed solely using changes in
annual mean temperature. The bottom panel quantifies the resulting differences
in aggregate damages by integrating observed intra-annual temperature distribu-

tions with the non-linear damage functions shown above. Areas in blue indicate
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higher damages under the shape-preserving shift, whereas areas in orange (for
Europe) and dark red (for North America) indicate higher damages under the
shape-changing scenario. The remainder of the paper quantifies the magnitude

of these omitted damages for different concentration pathways.
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Figure 1. : Illustrative Top Damage function for different daily mean temper-
atures plotted against the distribution of temperatures. Middle Histogram
of temperatures for historical, shape-preserving and shape-changing 2°C annual
mean temperature increases, Bottom Histogram of damages for historical, shape-
preserving and shape-changing 2°C annual mean temperature increases. Left For
a 2°C mean increase in temperature with an increase in hotter days tail, Right
For a 2°C mean increase in temperature with a decrease in cold days tail.

After this stylized illustration, we now turn to climate data for quantification.

We compare the distribution of daily mean temperatures in actual climate pro-
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CLIMATE SHIFT UNCERTAINTY 9

jections to a counter-factual synthetic projection where the shape of the distribu-
tion remains the same while the mean annual temperature increases, a standard
assumption in the literature. We build different climate landscapes, where ‘cli-
mate’ is defined as the underlying distribution, from which a specific regional
temperature distribution over a year is drawn [Waidelich et al., 2024]. We use
CMIP6 bias-corrected and downscaled data at a resolution of 60 arc-minutes
from five earth system models (ESM) stored in ISIMIP Protocol 3B [Frieler
et al., 2023]: GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MPI-ESM2-0,
UKESM1-0-LL. ISIMIP subset of climate models and de-biasing techniques were
designed to assess impacts of climate change and to span the larger ensemble
of CMIP models [Warszawski et al., 2014]. Thus, our illustrative study under-
estimates inter-model uncertainty among the over 100 CMIP6 models. Data is
available for three shared socioeconomic pathways (SSP 1-2.6, 3-7.0, 5-8.5). We
construct three different climate landscapes for each SSP. The first is the cli-
mate landscape without climate change, the ‘control’ climate: it is the mean
distribution of ‘picontrol’ time series experiments run over 2006 to 2100 with
pre-industrial COo concentration. The second is the landscape from actual cli-
mate projections which consists of bias-corrected, downscaled output from five
ESMs forced with future emissions from three different SSPs, the ‘projection’
climate: we use the average of the 10-year distribution around a date to ap-
proximately capture the underlying distribution from which the specific weather
realization from a specific year is drawn, i.e. 2045-2055 in our example'. This
landscape samples scenario uncertainty, inter-model uncertainty, and regionally
specific changes in the shape of daily mean temperature distributions. The third
climate landscape is a ‘synthetic’ landscape, where we add for each temperature

observed in the ‘control’ climate of each of the five ESM the mean of the change

1On the one hand, adding more years around 2050 would enable us to capture more of the internal
variability which characterizes 2050 climate [Schwarzwald and Lenssen, 2022], for instance more El Nifio
cycles. On the other hand, it would come with a costly assumption of perfect symmetry around 2050 in
climate change dynamics. By capturing less internal variability, we probably under-count the impact of
including regional information.
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in annual temperature in ‘projection’ climate in this specific ESM. This yields
a ESM-specific shape-preserving mean-shifted climate. This landscape samples
scenario uncertainty, inter-model uncertainty, and regional differences in mean
changes. Synthetic climates are constructed at a high level of precision? (0.01°C).

Rather than aggregating this data at the global scale, we construct regional
climate landscapes. Indeed, using a global dataset means that locations in which
a given temperature is relatively cold and places in which the same temperature
is relatively warm fall within the same bin of temperature, which distorts the
picture of regional climate shifts, and biases the estimates used to convert these
climate shifts into economic damage. We aggregate at the level of five major
Ko6ppen regions [Beck et al., 2023]: arid, continental, polar, temperate and trop-
ical. It is reasonable to think that these climate classifications are both good
ensembles in terms of warming patterns but also in terms of damage patterns
to capture differences between relatively homogeneous regions. If the differences
between damage patterns differ for many other reasons (e.g. cultural and polit-
ical), we capture some of the regional heterogeneity due to climatic conditions.
When building these climate landscapes, we keep only locations for which we have
economic data to estimate dose-response functions below and treat each of these

economic region within each climatic Képpen region as a single unit.
B. Econometric estimates of climate damages

The next step to compute damages that might be omitted from the spatial and
temporal aggregation of climate projections is then to combine the omitted shift
depicted in Figure 2 with non-linear dose-response functions of GDP to binned
daily mean temperatures. For the empirical analysis we combine Wenz et al.
[2023]’s Database Of Sub-national Economic Output (DOSE v2) with Hersbach
et al. [2020]’s climate reanalysis (ERA5). We process the climate reanalysis by

2Because we shift distributions using granular data, this process is computationally intensive. Since
damages are estimated from binned data, the binning procedure can slightly alter the distribution when
shifting the data. As a rule of thumb, we ensure ex post that the annual mean temperature of the
synthetic climate closely matches that of the projected climate, with a tolerance on the order of 10~2.
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CLIMATE SHIFT UNCERTAINTY 11

first calculating degree-days at the grid-cell level and then aggregating to DOSE
regions. We use the combined data to estimate dose-response functions of GDP

growth to daily mean temperatures. We estimate the model:

B
(1) git = i+ PuB+ > _ mpiys + i + €t

b=1
with the growth rate of GDP per capita PPP in USD in administrative unit ¢ in
year t as g;:, with the number of days with daily mean temperature in the bin
indexed b as np;, and with total annual precipitation P;;. Note that here, Py
is indeed only a control, focused on annual totals, rather than daily ones [Kotz
et al., 2022]. The model also includes region fixed effects «; and year fixed effects
. Errors € are clustered at the level of countries to account for spatial and
temporal autocorrelation. Our main parameters of interest are the coefficients of
temperature bins v, which represent the non-linear association between daily tem-
perature levels and economic growth. The 2°C temperature bins are winsorized
at level 99% for econometric estimation to limit the influence of rare events for
which we do not have sufficient observations. Furthermore, we follow Cruz and
Rossi-Hansberg [2024] and smooth the behavior of the point estimates across
temperature bins on the whole temperature distribution in 2050 with degree-two
polynomials, assuming that temperature effect on growth changes remains con-
stant above and below our upper and lower bins used for the estimation. We also
weigh each point estimate by the inverse of their standard errors to provide a

greater weight to the more accurate estimates.
C. Descriptive statistics

Figure 3 gives summary statistics for the warming and damage patterns of
each region in 2050 for SSP5-8.5. Graphs on the left plot the distribution of
mean daily temperatures for all climate landscapes, taking the average of all

five earth system models. The distributions have different shapes, both in terms
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Figure 2. : Change in growth rate from one day in this bin relative to one addi-
tional day in [20°C : 22°C].

of their dispersion and their mean. The shifts in the average temperature are
also of different magnitude, which is consistent with the observation of spatially
heterogeneous global warming. Shifts in shapes are also diverse, and not just
because of the initial shape of each distribution as we show on the graphs on
the left. These graphs describe the difference between the ‘synthetic’ and the
‘projection’ landscapes for different earth system models: for each temperature
level, it gives the difference in frequency between two distributions. The first
distribution is constructed by adding to each daily temperature for each climate
model the mean of the annual anomaly observed in that model, thus obtaining
a shape-preserving shift in mean, which is the assumption generally made in the
literature. The second distribution is taken from climate model projections of
daily mean temperatures. These difference can have opposite signs and various

magnitude depending on the model considered.
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Figure 3. : Left Distribution of daily mean temperatures for four climate land-
scapes. Right Distribution of climate shift, i.e. difference in distribution of daily
mean temperatures under projection vs. a synthetic climate. Data are for all
DOSE regions, SSP5-8.5, 2050. Data is winsorized 1%, x and y-axis differ.
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II. Quantification

A. Missing shape-related growth effect of climate change

We express the GDP growth effect of daily temperatures in climate projections
as a share of this effect in synthetic climate, i.e. in a setting where we assume that
the shape of the distribution of daily temperatures remains the same when the
mean increases. Indeed, we want to measure how much the change in the shape of
the distribution of daily mean temperatures matter for the estimation of economic
damages. To have a measure that approaches standard climate damages, growth
effects in warming climates are expressed with respect to growth effects in control
climate. Growth effect at each bin b is v,. We apply a double difference procedure
to find the change in growth effect between synthetic climate and projections. The
share of the climate growth effect underestimated by the aggregation of climate

data under synthetic climate in a given area writes:

Qw,synthetic Qw,projections

(2) DD¥ = 100 x

‘Qw,synthetic _ Qw,control‘

where, for a given SSP and earth system model in year 2050 in our climate land-
scape C (control, projections, synthetic) for a given dose-response function w in

sub-administrative region DOSE d in Koppen-Geiger climate zone k, damage is

leob,C

ymd = 2b 'ybtg’;md. This estimate reflects the percentage increase (or decrease)

in damages that results from omitting the shape change, relative to the standard
damage estimates based on a shape-preserving synthetic shift in the mean. We
take the absolute value in the denominator because it is possible that welfare
could increase under climate change scenarios. Using the absolute deviation en-
sures that, regardless of whether climate change implies welfare gains or losses, a
positive normalized difference consistently indicates that we underestimate dam-

ages (or overestimate the benefits) of climate change in the projected scenario.
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B. Aggregate impacts

While we build regional climate landscapes that use the granularity given in
climate datasets rather than too aggregated information to discuss climate pol-
icy, we seek for global indicators that can easily be applied to aggregate economic
models. We compute for each DOSE region within each larger Képpen-Geiger
zone the share of missing growth due to disaggregated warming and damage pat-
terns. We use area-weighting to build DOSE-level estimates of missing growth
from DOSE*Koppen estimates. For the sake of transparency and to avoid reas-
signing DOSE regions—on which the dose-response function was originally esti-
mated—based on shifting Koppen-Geiger zones, we assume that DOSE regions
retain their current Képpen-Geiger classification in 2050. While the distribution
of Koppen-Geiger zones might change under a changing climate [Beck et al., 2023],
such estimated shifts (13% transition at 1km resolution in the worst SSP5-8.5 by
2100) would introduce an additional layer of uncertainty into our estimates.

We then aggregate the DOSE-level growth effect to the global scale based on the
share of each zone in global GDP in 2015,s,, = GDP,,/ Zj GDP;. As for Koppen-
Geiger region, we do not add a layer of uncertainty related to future growth paths
under different SSP. When aggregating across regions to assess the absolute effect
in terms of growth, it is essential to account for the absolute change between
the synthetic and historical climate. Using only the relative measure DD fails
to weight for the fact that different regions experience different magnitudes of
climate impact. Our final weighted variable of interest therefore captures the
share of aggregate damages that are omitted due to the structure of the global

aggregation procedure.

> w (DDY - sy, - wy,)

3 DD =
( ) global Zw S - Wy

On Figure 4, we plot

where the weighting w,, is: w,, = |Qw-synthetic _ qQu.control|

our estimate of the share of missing growth effects for each ESM and the mean



320

321

322

323

324

325

326

327

328

329

330

across ESM. The assumption made in the literature of a shape-preserving shift
in mean annual global temperature interacted with global damage patterns thus
yields biased estimates of future economic damages of climate change. This bias is
an underestimation of future damages: accounting for the shift in regional shape
would increase the actual damage by on average 25% (21-28% depending on the
SSP, 4-46% depending on the ESM and the SSP) in 2050. The shift in shape

matters also for less carbon-intensive pathways.
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% of damage underestimated

Figure 4. : Global DD for each ESM and the average over ESM.

Overall, this shift in the aggregate profile of climate impacts should motivate
stronger mitigation and adaptation efforts, as intra-annual changes in the temper-
ature distribution lead to greater overall damages. But what are the distributional

effects of these omitted intra-annual shifts in warming patterns?
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C. Distributional impacts

Thus far, we have focused on the aggregate impact of the omitted shift in the
regional shape of daily temperature distributions. We now turn to the distri-
bution of damages. The table below reports, for each Koppen-Geiger region,
its share of global GDP in 2015, the absolute damage in synthetic climate in
comparison with control climate and the percentage of damages that are un-
derestimated across different SSPs. Several key conclusions can be drawn. Ig-
noring the intra-annual distribution of temperatures in all regions means un-
derestimating damages. This underestimation can be substantial—for instance,
in polar regions—but its overall impact is limited due to either the low abso-
lute change in damages between control and synthetic climate within those areas

or the small share of these regions in global GDP. The share of each region is

DD, = (DD"-s;-w;) /Y, (DD¥ - sy - wy).

SSP  Arid (12% of GDP) Continental (27% of GDP) Polar (1% of GDP) Temperate (53% of GDP) Tropical (8% of GDP)
1-2.6 271 [2.414) 57.16 [2.251] 2633.76 [0.018] 29.39 [2.372] 0.55 [9.126]

37.0 7.01 [2.307] 47.35 [2.849] 587.08 [0.09] 13.12 [2.722] 25.35 [5.905]

585 4.29 [2.24] 54.92 [3.005] 532.57 [0.112] 16.43 [2.797) 75.28 [4.654]

Table 1-—: DD (in %) and [absolute synthetic damage] for different SSP in each
Koppen-Geiger zones (with their share in 2015 GDP).

When we decompose by temperature levels to identify whether hot or cold
days are responsible for the omitted damages in the shape, we find that the pic-
ture depends on the Koppen-Geiger zone considered but remains stable across
SSPs. The share of each bin b as a share of region i damage is: Dfog“” =
(DDb . wb) / (DDi -85 wi). In the figure below, we plot—for each SSP— how
each temperature level contributes to the overall aggregate damage. In red (blue),
the bin contributes positively (negatively) to the overall underestimation of dam-
ages. These results are obtained interacting the climate shifts from Figure 2 with
the damage function from Figure 3.

While one might expect tail effects to be driving our results, it turns out that

it is not only extreme events that matter for welfare. Most of the omitted shift
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so that the total sums to 100%.

between synthetic and projection climates in Figure 5 are indeed located along
the whole distribution rather than concentrated in extreme temperature levels.
Thus, changes across the entire shape of the intra-annual temperature distribution
are important. The observed changes in distributional shape exhibit consistent

patterns across all SSPs. This should encourage caution in relying on thresholds or
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arbitrary moments of the temperature distribution for projecting future damages.

ITII. Conclusion

Linear relationships are isomorphic to aggregation and other mathematical
transformation. Climate-society relationships, meanwhile, are famously nonlin-
ear. Disaggregating spatial and temporal climate responses matters. Indeed,
switching from global annual mean temperatures to regional distributions of daily
mean temperatures affects the magnitude of economic damages from climate
change, since the shape of the intra-annual temperature distribution is neither
fixed across space or time. Spatio-temporal disaggregation, thus, reveals how un-
certainty between climate models on the entire shape of the distribution of future
weather realizations cascades down to regional damage estimates. Accounting
for daily temperatures rather than annual averages increases the estimation of
economic damages, a finding consistent with previous studies [Rudik et al., 2022].

In 2050, under all SSPs, using non-linear intra-annual damage patterns inter-
acted with the shift in the entire shape of the distribution of daily temperatures
yields climate damages at the global scale that are on average 25% (21-28%, de-
pending on the SSP) larger than the damage obtained under the assumption of
shape-preserving shift in annual mean daily temperature. The shape uncertainty
about shifts in daily temperature distributions should therefore be taken into
consideration for decision-making. We show that the omitted damages are not
primarily driven by tail effects, but are distributed across the full range of daily
mean temperatures. Extreme events alone do not account for the intra-annual
damage pattern; instead, the entire temperature distribution plays a critical role.

To our knowledge, we provide the first comparison between various approaches
to spatial and temporal aggregation regarding impacts of changes in mean surface
temperatures on economic activity and quantify how much these often-overlooked
aggregation procedures matter empirically. We believe that this procedure can be

reasonably translated vertically and horizontally. Vertically, this framework can
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be applied to other economic damages stemming, for instance, from changes in the
shape of the annual distribution of daily maximum temperatures. Horizontally,
the framework could be used to infer results in regions for which we do not have
socioeconomic data to estimate damage functions. Here we have kept the DOSE
regions for the sake of consistency. But using Koppen-Geiger climatic zones, i.e.
widely available physical data, to build ensembles and generalize the results over
these ensembles could be a useful detour at first, alongside a necessary deepening

in the availability of socioeconomic data, particularly in Africa.

Our analysis also comes with limitations. In particular, our estimation of re-
gional damage functions is based on the idea that differences in the economic dam-
age caused by weather—and therefore by climate change—is intimately linked to
climatic zones. However, there are many factors that go well beyond geographi-
cal determinism that we do not explore here. Furthermore, Earth System Models
are imperfect, and some may not be able to capture well the shape (or changes
in the shape) of the temperature distribution [Kornhuber et al., 2023]. When
it comes to estimating the future damage of climate change, other approaches
use annual temperature [Bilal and Kénzig, 2024] and, thus, avoid the problem of
time-fixed effects, which erase a large portion of climate impacts. The question
of aggregation is less of an issue in this case, as these approaches consider an-
nual temperature to be a sufficient statistic for estimating impacts. Nevertheless,
the question of the relevance of past natural variability as a proxy for global an-
nual climate change based on complex processes and rising carbon concentration

remains, and is left for further research.

Another limitation lies in defining a rule of thumb that holds universally—across
different parts of the world (e.g., tropical vs. temperate regions) and under various
future climate scenarios (e.g., with more or less severe climate disruption)—for
how far one should go in disaggregating climate variables. Beyond daily mean
temperature, one could further investigate repeated events with potentially non-

linear impacts, interactions between temperature and precipitation to account for



417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

CLIMATE SHIFT UNCERTAINTY 21

wet-bulb effects, or distinguish between daytime and nighttime temperatures to
better capture the nature of heatwaves, among others.

Finally, while we studied variations of damage patterns in space and time, we
have left out the question of variation of damage patterns with societal adapta-
tion to climatic changes, what has been dubbed a ‘swinging climate’ [Mérel et al.,
2024]. How might a given daily temperature yield different damages in any par-
ticular region as it moves away from its normal climatic zone? That raises the
question of how adaptation might interact with the entire distribution of climatic

factors, a question similarly left for further research.
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Appendix A. Building climate landscapes

We scale the frequency of observations by the share of land area in each cell
using GPW4 dataset. We compare changes in shapes of daily mean tempera-
ture distributions T}, in five Képpen regions r and climate model m, i.e. the
distribution of all T;,, daily mean temperatures in region r and model m, in
three different climates C. Climate C are: a control climate, ISIMIP projec-
tions, the synthetic distribution. We bin the temperature distributions ¢ at
0.01°C: f(.) is a function that bin the distributions. Our final landscapes for
each year are: (1) control climate, without climate change TComrol = f(¢controly,
(2) ISIMIP projections Ty = f(thn%7), (3) Synthetic with model average are
built by adding the difference between binned projections and control climate,

synth.model Tr0j
Tm%" — f (t%g;ltrol + TTI)JW ) Tﬁ;};ztrol) .

Appendix B. Képpen regions

Koppen regions
ARID
CONTINENTAL
POLAR
TEMPERATE
TROPICAL

Figure 6. : Koppen climatic zones

[Beck et al., 2023]
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Appendix C. More results on the distributional aspects

I plot the distribution of relative DD for each region and SSP for different ESM.
The x-axis is signed log scale as the relative estimates can have large absolute
values. Indeed, these relative changes in damage are not weighted by the absolute

climate damage.

Between Earth System Models
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Figure 7. : Distribution of relative DD for each region and SSP, for different ESM
and the average across ESM.
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I plot the share of each 1°C temperature bin of damages in the under or over-
estimation of damages in each SSP and Koppen-Geiger region . The intra-annual

patterns (sign, not magnitude) are stable across SSP in each region.
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Figure 9. : Absolute damages (%), 2050, SSP5-8.5.
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s There is a low positive correlation of omitted damages (regional DD) with

7 income, even if the data are scattered. We do the same for the absolute change

in damage.
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Figure 11. : Regional DD, year 2050.
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Figure 12. : Absolute difference in damage, 2050.

458
459 Appendix D. Results from econometric specification

460 These are the regression results for our benchmark dose-response function.
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a61 Appendix E. Results with alternative dose-response functions
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462 We estimate dose-response functions with the same specification except that g;;

is not GDP growth but level. Global DD remains robust.
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Figure 14. : Alternative regression with GDP levels rather. Global DD estimates.
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