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Knowing how future climate damages might be distributed across time and5

space is an important research frontier and policy issue for climate scientists and6

economists alike. Projections of endogenous climate damages in macroeconomic7

models [Fernández-Villaverde et al., 2024] typically rely on reduced-form relation-8

ships between climate change and the macro-economy, which are generally based9

on annual climatic statistics—e.g. mean annual temperatures. Furthermore,10

models are generally aggregated for that climate variable to be global—mean an-11

nual global temperatures. In these integrated climate-economy models, carbon12

emissions are a by-product of regional economic activities. A reduced-form cli-13

mate module captures endogenously how these carbon emissions turn into global14

annual mean temperature anomalies, from which regional annual mean tempera-15

ture anomalies can be statistically down-scaled through a simple linear and time-16

invariant factor, a process also called ‘pattern scaling’. Lastly, the regional phys-17

ical impacts are interacted with dose-response functions estimated on global data18

to measure the economic impacts of endogenous climate change. These macroe-19

conomic models are either global [Nordhaus, 1994, Barrage and Nordhaus, 2024,20

Cai and Lontzek, 2019, Traeger, 2023], regional [Nordhaus and Yang, 1996] or21

gridded, as in spatial integrated assessment modelling (IAM), e.g. Krusell and22

Smith Jr [2022], Cruz and Rossi-Hansberg [2024] and Desmet and Rossi-Hansberg23

[2024].24

The underlying assumption behind these approaches is that the shapes of the25

spatio-temporal distributions of mean temperatures do not matter. Across time,26

the intra-annual shape of the distribution of daily mean temperature is assumed27

to remain constant: temperature increases due to climate change are shape-28

preserving increases in annual mean. Across space, an average increase in tem-29

perature at global level is assumed to affect the regional annual distribution by30

a linear and time-invariant down-scaling factor such as the regional transient re-31

sponse to cumulative emissions [Leduc et al., 2016].32

The reality of future regional weather changes, however, is more complex, for33
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two main reasons. First, natural climate variability over time and space, both34

from external (e.g. solar cycles) and internal factors (e.g. El Niño-La Niña), might35

distort future temperature distributions beyond the annual mean [Schwarzwald36

and Lenssen, 2022]. Second and more fundamentally, the process determining the37

shape of the weather distribution within a given year for a given regional mean38

temperature might not be stationary, so that time-invariant relations between39

annual averages and the intra-annual distribution of weather only imperfectly40

reflect regional-specific shifts in warming patterns. In North-West Europe, the41

hottest summer days are warming twice as fast as mean summer days [Patterson,42

2023]. Cold extremes are anticipated to warm at a faster rate than both hot43

extremes and average temperatures for much of the Northern Hemisphere [Gross44

et al., 2020]. Hot days over tropical land warm substantially more than the av-45

erage day: for example, warming of the hottest 5% of land days is 21% larger46

than the time-mean warming averaged across models [Byrne, 2021]. That opens47

the question around the ‘right’ level of spatial and temporal aggregation for pro-48

jecting future impacts. Aggregation has advantages, as it comes with statistical49

robustness, clear identification of causal relationships, and numerical tractability50

in models where anomaly in climate results from endogenous anthropogenic emis-51

sions; it also has shortcomings, such as the risk of averaging contradictory effects52

between regions both in terms of damage and warming patterns.53

Instead of modeling climate change stemming from anthropogenic carbon emis-54

sions as an endogenous process, some IAMs use spatially disaggregated projections55

from global circulation models to infer the costs of climate change with adapting56

agents [Rudik et al., 2022, Bilal and Rossi-Hansberg, 2023]. In these models,57

which incorporate credible intra-annual climate projections, climate change re-58

mains exogenous to economic activities. As a result, the estimates from the two59

bodies of literature—endogenous and exogenous—have evolved in parallel, yet the60

effects of this divergence on the aggregate and distributional estimates of climate61

impacts remain unclear. We aim to shed light on this apparent gap by testing62



the impact of including regional projections that sample changes in the entire63

intra-annual distribution of temperatures.64

To disentangle these spatial and temporal effects, we follow a two-step approach.65

First, we switch from annual average temperatures to the complete daily tempera-66

ture distribution over a year and show how this affects the heterogeneous distribu-67

tion of warming patterns between regions, compared to a setting where we assume68

a shape-preserving shift in mean annual temperatures under a synthetic changing69

climate. Second, we interact these regional-specific shifts in warming patterns70

with intra-annual damage patterns, comparing them to a setting where damage71

are inferred from annual mean temperature. Building on work on the non-linear72

effects of temperature on economic activity using temperature bins [Dell et al.,73

2014, Hsiang, 2016, Auffhammer, 2018], we use non-linear dose response functions74

in intra-annual temperatures to capture some of the regional idiosyncrasies in the75

climate-society relationship by considering changes in the intra-annual shape of76

temperature distributions for each aggregate Köppen-Geiger climatic zone: arid,77

continental, polar, temperate, tropical.78

We further probe the consequences of this spatio-temporal aggregation of cli-79

mate projections on quantifying the uncertainty surrounding any best-guess esti-80

mate of future climate damages. Uncertainties abound [Rising et al., 2022, Moore81

et al., 2024, Waidelich et al., 2024]. The quantifiable variance of future projec-82

tions of climate impacts is affected by scenario uncertainty (differences in Shared83

Socioeconomic Pathways,SSPs), model uncertainty (differences in Earth System84

Models’—ESMs’—responses to the SSPs), internal variability (spatio-temporally,85

due to the chaotic nature of the climate and due to regional differences that86

may be hidden by regional aggregation), choices made in post-processing or bias-87

correcting ESM output (including how finely to apply projected changes in cli-88

mate distributions from ESMs), regression uncertainty from the dose-response89

functions, and differences between observational data products used to fit the90

dose-response function and act as a baseline to which future ESM output is com-91
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pared. Historically, many studies have relied on global annual average climate92

variables to estimate and project climate damages, thereby overlooking signifi-93

cant sources of internal variability. These include regional disparities in climate94

conditions and the tendency to extract only mean changes from ESM projections.95

This limitation is further exacerbated by the inherent constraints of endogenous96

reduced-form climate models, which struggle to capture future changes in intra-97

annual weather patterns—an aspect that might be better addressed through the98

development of climate emulators [Eftekhari et al., 2024]. We focus on two of these99

uncertainties and their interaction: the sensitivity of economic impact projections100

to an improved sampling of internal variability (through capturing regional dif-101

ferences in impacts) and an improved treatment of ESM output (by capturing102

changes in the full shape of the temperature distribution instead of annual aver-103

ages). We further uncover some of the model uncertainties between ESMs using104

the full shape of warming patterns that is usually reduced by the aggregation105

procedure on a global and annual scale. Lastly, we provide a framework based106

on mean temperature distributions that can be applied to other climate data, for107

instance precipitation patterns [Waidelich et al., 2024], and a quantification to108

show how much the regional-specific shift in the shape of warming patterns in-109

teracting with intra-annual damage patterns matters empirically. We do so both110

at the aggregate level and in the distribution of impacts, with the year 2050 as a111

case study.112

We also contribute to the recent literature and ongoing debate on the appropri-113

ate estimation of future climate change damages. In a sense, we take the opposite114

approach of Bilal and Känzig [2024], who deliberately avoid disaggregation and115

rely on global annual average temperature to infer future damages. While we116

share their concern that time fixed effects may wash out the common component117

of a shock in the estimation—thereby focusing only on the idiosyncratic regional118

part—we take the opposite stance by zooming in on intra-annual weather changes119

both for the estimation and for climate projections. Our aim is to highlight the120



importance of accounting for both intra-annual variability and regional hetero-121

geneity when assessing idiosyncratic climate damages. Our core intuition is akin122

to a Jensen’s inequality argument: if intra-annual damages are convex in tem-123

perature, then annual averages may be misleading (i.e., temporal heterogeneity124

matters). A next step beyond our current approach would be to develop a frame-125

work that preserves both the idiosyncratic and common components of climate126

shocks in estimation and aggregation, while also moving beyond annual means127

and the global scale to fully capture the spatial and temporal heterogeneity of128

climate impacts from past weather shocks [Lemoine, 2018].129

All this yields two main conclusions. First, switching from annual global mean130

temperature to the regional annual distribution of daily mean temperatures af-131

fects the magnitude of the estimates of economic damages: in 2050, using damage132

patterns interacted with the shift in the whole shape of the distribution of daily133

temperatures yields climate damage at the global scale that are around 25% larger134

than the damage obtained under the assumption of a shape-preserving shift in135

annual mean daily temperature. Standard aggregation leads to an underestima-136

tion of future climate damages. We test this result across a range of SSPs, from137

the least (SSP1-2.6) to the most carbon-intensive (SSP5-8.5), finding a range of138

of 21-28%. Second, we show that the distributional effect is far from clear-cut.139

Uncertainty in the change in the shape of the temperature distributions has wildly140

different effects across regions. In particular, we show that the omitted damages141

are not primarily driven by tail effects. Extreme events alone do not explain the142

intra-annual pattern of damages; rather, the entire distribution of temperatures143

plays a critical role. This effect holds consistently across different temperature144

pathways, both at the regional level and in the aggregate.145
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I. Climate and economic data146

A. Warming patterns147

Our main concern is that shifts in the intra-annual distribution of daily mean148

temperatures may not be adequately captured by changes in annual mean temper-149

ature, which preserve the overall shape of seasonal warming patterns. On Figure150

1 below, we illustrate this concern for two scenarios, each involving a +2°C in-151

crease in annual mean temperature. These scenarios are motivated by two stylized152

empirical regularities observed over recent decades. First, cold extremes across153

North America have warmed substantially faster than the winter mean temper-154

ature since 1980 [Blackport and Fyfe, 2024]. Second, the hottest summer days155

in North-West Europe have warmed roughly twice as fast as mean summer days156

since 1960 [Patterson, 2023]. In the illustrative figures below, North-West Eu-157

rope is shown on the left panel and North America on the right. The top panel158

plots damage functions against the frequency of days in each temperature bin.159

For exposition, we use an inverted bell-shaped damage function, where marginal160

damages rise at both lower and higher temperature levels. The middle panel161

shows the histogram of daily temperatures for three cases: (i) the historical cli-162

mate (green), (ii) a +2°C mean-preserving shift in the temperature distribution163

(blue), and (iii) a +2°C mean increase with a change in shape, characterized by a164

heavier hot tail (orange, left panel) or a reduced cold tail (dark red, right panel).165

The red dotted line represents the difference in frequency (days per temperature166

bin) between the shape-changing and shape-preserving +2°C scenarios, where the167

latter assumes a constant intra-annual temperature distribution. The difference168

between these two distributions highlights omitted days, i.e. specific temperature169

exposures that are not captured when impacts are assessed solely using changes in170

annual mean temperature. The bottom panel quantifies the resulting differences171

in aggregate damages by integrating observed intra-annual temperature distribu-172

tions with the non-linear damage functions shown above. Areas in blue indicate173



higher damages under the shape-preserving shift, whereas areas in orange (for174

Europe) and dark red (for North America) indicate higher damages under the175

shape-changing scenario. The remainder of the paper quantifies the magnitude176

of these omitted damages for different concentration pathways.
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Figure 1. : Illustrative Top Damage function for different daily mean temper-
atures plotted against the distribution of temperatures. Middle Histogram
of temperatures for historical, shape-preserving and shape-changing 2°C annual
mean temperature increases, Bottom Histogram of damages for historical, shape-
preserving and shape-changing 2°C annual mean temperature increases. Left For
a 2°C mean increase in temperature with an increase in hotter days tail, Right
For a 2°C mean increase in temperature with a decrease in cold days tail.

177

After this stylized illustration, we now turn to climate data for quantification.178

We compare the distribution of daily mean temperatures in actual climate pro-179
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jections to a counter-factual synthetic projection where the shape of the distribu-180

tion remains the same while the mean annual temperature increases, a standard181

assumption in the literature. We build different climate landscapes, where ‘cli-182

mate’ is defined as the underlying distribution, from which a specific regional183

temperature distribution over a year is drawn [Waidelich et al., 2024]. We use184

CMIP6 bias-corrected and downscaled data at a resolution of 60 arc-minutes185

from five earth system models (ESM) stored in ISIMIP Protocol 3B [Frieler186

et al., 2023]: GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MPI-ESM2-0,187

UKESM1-0-LL. ISIMIP subset of climate models and de-biasing techniques were188

designed to assess impacts of climate change and to span the larger ensemble189

of CMIP models [Warszawski et al., 2014]. Thus, our illustrative study under-190

estimates inter-model uncertainty among the over 100 CMIP6 models. Data is191

available for three shared socioeconomic pathways (SSP 1-2.6, 3-7.0, 5-8.5). We192

construct three different climate landscapes for each SSP. The first is the cli-193

mate landscape without climate change, the ‘control’ climate: it is the mean194

distribution of ‘picontrol’ time series experiments run over 2006 to 2100 with195

pre-industrial CO2 concentration. The second is the landscape from actual cli-196

mate projections which consists of bias-corrected, downscaled output from five197

ESMs forced with future emissions from three different SSPs, the ‘projection’198

climate: we use the average of the 10-year distribution around a date to ap-199

proximately capture the underlying distribution from which the specific weather200

realization from a specific year is drawn, i.e. 2045-2055 in our example1. This201

landscape samples scenario uncertainty, inter-model uncertainty, and regionally202

specific changes in the shape of daily mean temperature distributions. The third203

climate landscape is a ‘synthetic’ landscape, where we add for each temperature204

observed in the ‘control’ climate of each of the five ESM the mean of the change205

1On the one hand, adding more years around 2050 would enable us to capture more of the internal
variability which characterizes 2050 climate [Schwarzwald and Lenssen, 2022], for instance more El Niño
cycles. On the other hand, it would come with a costly assumption of perfect symmetry around 2050 in
climate change dynamics. By capturing less internal variability, we probably under-count the impact of
including regional information.



in annual temperature in ‘projection’ climate in this specific ESM. This yields206

a ESM-specific shape-preserving mean-shifted climate. This landscape samples207

scenario uncertainty, inter-model uncertainty, and regional differences in mean208

changes. Synthetic climates are constructed at a high level of precision2 (0.01°C).209

Rather than aggregating this data at the global scale, we construct regional210

climate landscapes. Indeed, using a global dataset means that locations in which211

a given temperature is relatively cold and places in which the same temperature212

is relatively warm fall within the same bin of temperature, which distorts the213

picture of regional climate shifts, and biases the estimates used to convert these214

climate shifts into economic damage. We aggregate at the level of five major215

Köppen regions [Beck et al., 2023]: arid, continental, polar, temperate and trop-216

ical. It is reasonable to think that these climate classifications are both good217

ensembles in terms of warming patterns but also in terms of damage patterns218

to capture differences between relatively homogeneous regions. If the differences219

between damage patterns differ for many other reasons (e.g. cultural and polit-220

ical), we capture some of the regional heterogeneity due to climatic conditions.221

When building these climate landscapes, we keep only locations for which we have222

economic data to estimate dose-response functions below and treat each of these223

economic region within each climatic Köppen region as a single unit.224

B. Econometric estimates of climate damages225

The next step to compute damages that might be omitted from the spatial and226

temporal aggregation of climate projections is then to combine the omitted shift227

depicted in Figure 2 with non-linear dose-response functions of GDP to binned228

daily mean temperatures. For the empirical analysis we combine Wenz et al.229

[2023]’s Database Of Sub-national Economic Output (DOSE v2) with Hersbach230

et al. [2020]’s climate reanalysis (ERA5). We process the climate reanalysis by231

2Because we shift distributions using granular data, this process is computationally intensive. Since
damages are estimated from binned data, the binning procedure can slightly alter the distribution when
shifting the data. As a rule of thumb, we ensure ex post that the annual mean temperature of the
synthetic climate closely matches that of the projected climate, with a tolerance on the order of 10−2.
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first calculating degree-days at the grid-cell level and then aggregating to DOSE232

regions. We use the combined data to estimate dose-response functions of GDP233

growth to daily mean temperatures. We estimate the model:234

(1) git = αi + Pitβ +
B∑
b=1

nbitγb + µt + ϵit

with the growth rate of GDP per capita PPP in USD in administrative unit i in235

year t as git, with the number of days with daily mean temperature in the bin236

indexed b as nbit, and with total annual precipitation Pit. Note that here, Pit237

is indeed only a control, focused on annual totals, rather than daily ones [Kotz238

et al., 2022]. The model also includes region fixed effects αi and year fixed effects239

µt. Errors ϵit are clustered at the level of countries to account for spatial and240

temporal autocorrelation. Our main parameters of interest are the coefficients of241

temperature bins γb which represent the non-linear association between daily tem-242

perature levels and economic growth. The 2°C temperature bins are winsorized243

at level 99% for econometric estimation to limit the influence of rare events for244

which we do not have sufficient observations. Furthermore, we follow Cruz and245

Rossi-Hansberg [2024] and smooth the behavior of the point estimates across246

temperature bins on the whole temperature distribution in 2050 with degree-two247

polynomials, assuming that temperature effect on growth changes remains con-248

stant above and below our upper and lower bins used for the estimation. We also249

weigh each point estimate by the inverse of their standard errors to provide a250

greater weight to the more accurate estimates.251

C. Descriptive statistics252

Figure 3 gives summary statistics for the warming and damage patterns of253

each region in 2050 for SSP5-8.5. Graphs on the left plot the distribution of254

mean daily temperatures for all climate landscapes, taking the average of all255

five earth system models. The distributions have different shapes, both in terms256
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of their dispersion and their mean. The shifts in the average temperature are257

also of different magnitude, which is consistent with the observation of spatially258

heterogeneous global warming. Shifts in shapes are also diverse, and not just259

because of the initial shape of each distribution as we show on the graphs on260

the left. These graphs describe the difference between the ‘synthetic’ and the261

‘projection’ landscapes for different earth system models: for each temperature262

level, it gives the difference in frequency between two distributions. The first263

distribution is constructed by adding to each daily temperature for each climate264

model the mean of the annual anomaly observed in that model, thus obtaining265

a shape-preserving shift in mean, which is the assumption generally made in the266

literature. The second distribution is taken from climate model projections of267

daily mean temperatures. These difference can have opposite signs and various268

magnitude depending on the model considered.269
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II. Quantification270

A. Missing shape-related growth effect of climate change271

We express the GDP growth effect of daily temperatures in climate projections272

as a share of this effect in synthetic climate, i.e. in a setting where we assume that273

the shape of the distribution of daily temperatures remains the same when the274

mean increases. Indeed, we want to measure how much the change in the shape of275

the distribution of daily mean temperatures matter for the estimation of economic276

damages. To have a measure that approaches standard climate damages, growth277

effects in warming climates are expressed with respect to growth effects in control278

climate. Growth effect at each bin b is γb. We apply a double difference procedure279

to find the change in growth effect between synthetic climate and projections. The280

share of the climate growth effect underestimated by the aggregation of climate281

data under synthetic climate in a given area writes:282

(2) DDω = 100 ∗ Ωω,synthetic − Ωω,projections

|Ωω,synthetic − Ωω,control|

where, for a given SSP and earth system model in year 2050 in our climate land-283

scape C (control, projections, synthetic) for a given dose-response function ω in284

sub-administrative region DOSE d in Köppen-Geiger climate zone k, damage is285

Ωglob,C
ymd =

∑
b γbt

C
bymd. This estimate reflects the percentage increase (or decrease)286

in damages that results from omitting the shape change, relative to the standard287

damage estimates based on a shape-preserving synthetic shift in the mean. We288

take the absolute value in the denominator because it is possible that welfare289

could increase under climate change scenarios. Using the absolute deviation en-290

sures that, regardless of whether climate change implies welfare gains or losses, a291

positive normalized difference consistently indicates that we underestimate dam-292

ages (or overestimate the benefits) of climate change in the projected scenario.293
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B. Aggregate impacts294

While we build regional climate landscapes that use the granularity given in295

climate datasets rather than too aggregated information to discuss climate pol-296

icy, we seek for global indicators that can easily be applied to aggregate economic297

models. We compute for each DOSE region within each larger Köppen-Geiger298

zone the share of missing growth due to disaggregated warming and damage pat-299

terns. We use area-weighting to build DOSE-level estimates of missing growth300

from DOSE*Koppen estimates. For the sake of transparency and to avoid reas-301

signing DOSE regions—on which the dose-response function was originally esti-302

mated—based on shifting Köppen-Geiger zones, we assume that DOSE regions303

retain their current Köppen-Geiger classification in 2050. While the distribution304

of Köppen-Geiger zones might change under a changing climate [Beck et al., 2023],305

such estimated shifts (13% transition at 1km resolution in the worst SSP5-8.5 by306

2100) would introduce an additional layer of uncertainty into our estimates.307

We then aggregate the DOSE-level growth effect to the global scale based on the308

share of each zone in global GDP in 2015,sω = GDPω/
∑

j GDPj . As for Köppen-309

Geiger region, we do not add a layer of uncertainty related to future growth paths310

under different SSP. When aggregating across regions to assess the absolute effect311

in terms of growth, it is essential to account for the absolute change between312

the synthetic and historical climate. Using only the relative measure DDω fails313

to weight for the fact that different regions experience different magnitudes of314

climate impact. Our final weighted variable of interest therefore captures the315

share of aggregate damages that are omitted due to the structure of the global316

aggregation procedure.317

(3) DDglobal =

∑
ω (DDω · sω · wω)∑

ω sω · wω

where the weighting wω is: wω = |Ωω,synthetic − Ωω,control|. On Figure 4, we plot318

our estimate of the share of missing growth effects for each ESM and the mean319



across ESM. The assumption made in the literature of a shape-preserving shift320

in mean annual global temperature interacted with global damage patterns thus321

yields biased estimates of future economic damages of climate change. This bias is322

an underestimation of future damages: accounting for the shift in regional shape323

would increase the actual damage by on average 25% (21-28% depending on the324

SSP, 4-46% depending on the ESM and the SSP) in 2050. The shift in shape325

matters also for less carbon-intensive pathways.

ssp126

ssp370

ssp585

−10 0 10 20 30 40 50
% of damage underestimated

ESM

Average
Model

Figure 4. : Global DD for each ESM and the average over ESM.

326

Overall, this shift in the aggregate profile of climate impacts should motivate327

stronger mitigation and adaptation efforts, as intra-annual changes in the temper-328

ature distribution lead to greater overall damages. But what are the distributional329

effects of these omitted intra-annual shifts in warming patterns?330
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C. Distributional impacts331

Thus far, we have focused on the aggregate impact of the omitted shift in the332

regional shape of daily temperature distributions. We now turn to the distri-333

bution of damages. The table below reports, for each Köppen-Geiger region,334

its share of global GDP in 2015, the absolute damage in synthetic climate in335

comparison with control climate and the percentage of damages that are un-336

derestimated across different SSPs. Several key conclusions can be drawn. Ig-337

noring the intra-annual distribution of temperatures in all regions means un-338

derestimating damages. This underestimation can be substantial—for instance,339

in polar regions—but its overall impact is limited due to either the low abso-340

lute change in damages between control and synthetic climate within those areas341

or the small share of these regions in global GDP. The share of each region is342

DDi
share =

(
DDi · si · wi

)
/
∑

ω (DDω · sω · wω).

SSP Arid (12% of GDP) Continental (27% of GDP) Polar (1% of GDP) Temperate (53% of GDP) Tropical (8% of GDP)
1-2.6 2.71 [2.414] 57.16 [2.251] 2633.76 [0.018] 29.39 [2.372] 0.55 [9.126]
3-7.0 7.01 [2.307] 47.35 [2.849] 587.08 [0.09] 13.12 [2.722] 25.35 [5.905]
5-8.5 4.29 [2.24] 54.92 [3.005] 532.57 [0.112] 16.43 [2.797] 75.28 [4.654]

Table 1—: DD (in %) and [absolute synthetic damage] for different SSP in each
Köppen-Geiger zones (with their share in 2015 GDP).

343

When we decompose by temperature levels to identify whether hot or cold344

days are responsible for the omitted damages in the shape, we find that the pic-345

ture depends on the Köppen-Geiger zone considered but remains stable across346

SSPs. The share of each bin b as a share of region i damage is: DDshare
i,b =347 (

DDb · wb

)
/
(
DDi · si · wi

)
. In the figure below, we plot—for each SSP— how348

each temperature level contributes to the overall aggregate damage. In red (blue),349

the bin contributes positively (negatively) to the overall underestimation of dam-350

ages. These results are obtained interacting the climate shifts from Figure 2 with351

the damage function from Figure 3.352

While one might expect tail effects to be driving our results, it turns out that353

it is not only extreme events that matter for welfare. Most of the omitted shift354
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Figure 5. : Temperature levels contribution (in %) to global under-estimated
damages between projections and synthetic climate for each SSP (rows). In red
(blue), the bin represent a positive (negative) share of the overall underestimation.
We limit the x-axis to [-20:40], average the effects over 1°C bins and scale the effect
so that the total sums to 100%.

between synthetic and projection climates in Figure 5 are indeed located along355

the whole distribution rather than concentrated in extreme temperature levels.356

Thus, changes across the entire shape of the intra-annual temperature distribution357

are important. The observed changes in distributional shape exhibit consistent358

patterns across all SSPs. This should encourage caution in relying on thresholds or359
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arbitrary moments of the temperature distribution for projecting future damages.360

III. Conclusion361

Linear relationships are isomorphic to aggregation and other mathematical362

transformation. Climate-society relationships, meanwhile, are famously nonlin-363

ear. Disaggregating spatial and temporal climate responses matters. Indeed,364

switching from global annual mean temperatures to regional distributions of daily365

mean temperatures affects the magnitude of economic damages from climate366

change, since the shape of the intra-annual temperature distribution is neither367

fixed across space or time. Spatio-temporal disaggregation, thus, reveals how un-368

certainty between climate models on the entire shape of the distribution of future369

weather realizations cascades down to regional damage estimates. Accounting370

for daily temperatures rather than annual averages increases the estimation of371

economic damages, a finding consistent with previous studies [Rudik et al., 2022].372

In 2050, under all SSPs, using non-linear intra-annual damage patterns inter-373

acted with the shift in the entire shape of the distribution of daily temperatures374

yields climate damages at the global scale that are on average 25% (21-28%, de-375

pending on the SSP) larger than the damage obtained under the assumption of376

shape-preserving shift in annual mean daily temperature. The shape uncertainty377

about shifts in daily temperature distributions should therefore be taken into378

consideration for decision-making. We show that the omitted damages are not379

primarily driven by tail effects, but are distributed across the full range of daily380

mean temperatures. Extreme events alone do not account for the intra-annual381

damage pattern; instead, the entire temperature distribution plays a critical role.382

To our knowledge, we provide the first comparison between various approaches383

to spatial and temporal aggregation regarding impacts of changes in mean surface384

temperatures on economic activity and quantify how much these often-overlooked385

aggregation procedures matter empirically. We believe that this procedure can be386

reasonably translated vertically and horizontally. Vertically, this framework can387



be applied to other economic damages stemming, for instance, from changes in the388

shape of the annual distribution of daily maximum temperatures. Horizontally,389

the framework could be used to infer results in regions for which we do not have390

socioeconomic data to estimate damage functions. Here we have kept the DOSE391

regions for the sake of consistency. But using Köppen-Geiger climatic zones, i.e.392

widely available physical data, to build ensembles and generalize the results over393

these ensembles could be a useful detour at first, alongside a necessary deepening394

in the availability of socioeconomic data, particularly in Africa.395

Our analysis also comes with limitations. In particular, our estimation of re-396

gional damage functions is based on the idea that differences in the economic dam-397

age caused by weather—and therefore by climate change—is intimately linked to398

climatic zones. However, there are many factors that go well beyond geographi-399

cal determinism that we do not explore here. Furthermore, Earth System Models400

are imperfect, and some may not be able to capture well the shape (or changes401

in the shape) of the temperature distribution [Kornhuber et al., 2023]. When402

it comes to estimating the future damage of climate change, other approaches403

use annual temperature [Bilal and Känzig, 2024] and, thus, avoid the problem of404

time-fixed effects, which erase a large portion of climate impacts. The question405

of aggregation is less of an issue in this case, as these approaches consider an-406

nual temperature to be a sufficient statistic for estimating impacts. Nevertheless,407

the question of the relevance of past natural variability as a proxy for global an-408

nual climate change based on complex processes and rising carbon concentration409

remains, and is left for further research.410

Another limitation lies in defining a rule of thumb that holds universally—across411

different parts of the world (e.g., tropical vs. temperate regions) and under various412

future climate scenarios (e.g., with more or less severe climate disruption)—for413

how far one should go in disaggregating climate variables. Beyond daily mean414

temperature, one could further investigate repeated events with potentially non-415

linear impacts, interactions between temperature and precipitation to account for416
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wet-bulb effects, or distinguish between daytime and nighttime temperatures to417

better capture the nature of heatwaves, among others.418

Finally, while we studied variations of damage patterns in space and time, we419

have left out the question of variation of damage patterns with societal adapta-420

tion to climatic changes, what has been dubbed a ‘swinging climate’ [Mérel et al.,421

2024]. How might a given daily temperature yield different damages in any par-422

ticular region as it moves away from its normal climatic zone? That raises the423

question of how adaptation might interact with the entire distribution of climatic424

factors, a question similarly left for further research.425
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Appendix A. Building climate landscapes434

We scale the frequency of observations by the share of land area in each cell435

using GPW4 dataset. We compare changes in shapes of daily mean tempera-436

ture distributions Tmr in five Köppen regions r and climate model m, i.e. the437

distribution of all Tmr daily mean temperatures in region r and model m, in438

three different climates C. Climate C are: a control climate, ISIMIP projec-439

tions, the synthetic distribution. We bin the temperature distributions t at440

0.01°C: f(.) is a function that bin the distributions. Our final landscapes for441

each year are: (1) control climate, without climate change T control
mr = f(tcontrolmr ),442

(2) ISIMIP projections T proj
mr = f(tprojmr ), (3) Synthetic with model average are443

built by adding the difference between binned projections and control climate,444

T synth.model
mr = f

(
tcontrolmr + T proj

mr − T control
mr

)
.445

Appendix B. Köppen regions446

Köppen regions

ARID

CONTINENTAL

POLAR

TEMPERATE

TROPICAL

Figure 6. : Köppen climatic zones

[Beck et al., 2023]
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Appendix C. More results on the distributional aspects447

I plot the distribution of relative DD for each region and SSP for different ESM.448

The x-axis is signed log scale as the relative estimates can have large absolute449

values. Indeed, these relative changes in damage are not weighted by the absolute450

climate damage.
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I plot the share of each 1°C temperature bin of damages in the under or over-451

estimation of damages in each SSP and Köppen-Geiger region . The intra-annual452

patterns (sign, not magnitude) are stable across SSP in each region.
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Figure 8. : Decomposition for each Koppen-Geiger zone. Temperature levels
contribution (in %) to over/under estimated damages between projections and
synthetic-model climate. The bins are plotted for each Köppen-Geiger zone
(columns) and each SSP (rows). In red (blue), the bin represent a positive (neg-
ative) share of the overall effect.

453

We plot the distribution of absolute damages and omitted damages (DD) over454

the world for DOSE regions.455
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Figure 9. : Absolute damages (%), 2050, SSP5-8.5.

Figure 10. : Omitted damages (%), 2050, SSP5-8.5.



There is a low positive correlation of omitted damages (regional DD) with456

income, even if the data are scattered. We do the same for the absolute change457

in damage.
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Figure 11. : Regional DD, year 2050.

R = 0.604

0

2

4

6

−5 0 5 10

S
ig

ne
d 

Lo
g 

O
m

itt
ed

 D
am

ag
es

 (
%

)

SSP1−2.6

R = 0.671

0

2

4

6

−5 0 5 10

SSP3−7.0

R = 0.694

0

2

4

6

−5 0 5 10

SSP5−8.5

Figure 12. : Absolute difference in damage, 2050.

458

Appendix D. Results from econometric specification459

These are the regression results for our benchmark dose-response function.460



CLIMATE SHIFT UNCERTAINTY 27

0.004

0.002

0.000

0.002

0.004

Ch
an

ge
 in

 g
ro

wt
h 

ra
te

 fr
om

 o
ne

 a
dd

iti
on

al
 d

ay
 in

 b
in

 
re

la
tiv

e 
to

 a
 d

ay
 in

 b
in

 (2
0,

 2
2]

-1
8

-1
6

-1
4

-1
2

-1
0 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0

1N

1e6

Figure 13. : Dose-response function.

Appendix E. Results with alternative dose-response functions461

We estimate dose-response functions with the same specification except that git462

is not GDP growth but level. Global DD remains robust.
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Figure 14. : Alternative regression with GDP levels rather. Global DD estimates.
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köppen-geiger maps for 1901–2099 based on constrained cmip6 projections.471

Scientific data, 10(1):724, 2023.472

A. Bilal and D. R. Känzig. The macroeconomic impact of climate change: Global473

vs. local temperature. Technical report, National Bureau of Economic Research,474

2024.475

A. Bilal and E. Rossi-Hansberg. Anticipating climate change across the united476

states. Technical report, National Bureau of Economic Research, 2023.477

R. Blackport and J. C. Fyfe. Amplified warming of north american cold extremes478

linked to human-induced changes in temperature variability. Nature Commu-479

nications, 15(1):5864, 2024.480

M. P. Byrne. Amplified warming of extreme temperatures over tropical land.481

Nature Geoscience, 14(11):837–841, 2021.482

Y. Cai and T. S. Lontzek. The social cost of carbon with economic and climate483

risks. Journal of Political Economy, 127(6):2684–2734, 2019.484

J.-L. Cruz and E. Rossi-Hansberg. The economic geography of global warming.485

Review of Economic Studies, 91(2):899–939, 2024.486



CLIMATE SHIFT UNCERTAINTY 29

M. Dell, B. F. Jones, and B. A. Olken. What do we learn from the weather? the487

new climate-economy literature. Journal of Economic literature, 52(3):740–798,488

2014.489

K. Desmet and E. Rossi-Hansberg. Climate change economics over time and490

space. Annual Review of Economics, 16, 2024.491

A. Eftekhari, D. Folini, A. Friedl, F. Kübler, S. Scheidegger, and O. Schenk.492
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