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Knowing how future climate damages might be distributed across time and6

space is an important research frontier and policy issue for climate scientists and7

economists alike. Projections of endogenous climate damages in macroeconomic8

models [Fernández-Villaverde et al., 2024] typically rely on reduced-form relation-9

ships between climate change and the macro-economy, which are generally based10

on annual climatic statistics—e.g. mean annual temperatures. Furthermore,11

models are generally aggregated for that climate variable to be global—mean an-12

nual global temperatures. In these integrated climate-economy models, carbon13

emissions are a by-product of regional economic activities. A reduced-form cli-14

mate module captures endogenously how these carbon emissions turn into global15

annual mean temperature anomalies, from which regional annual mean tempera-16

ture anomalies can be statistically down-scaled through a simple linear and time-17

invariant factor, a process also called ‘pattern scaling’. Lastly, the regional phys-18

ical impacts are interacted with dose-response functions estimated on global data19

to measure the economic impacts of endogenous climate change. These macroe-20

conomic models are either global [Nordhaus, 1994, Barrage and Nordhaus, 2024,21

Cai and Lontzek, 2019, Traeger, 2023], regional [Nordhaus and Yang, 1996] or22

gridded, as in spatial integrated assessment modelling (IAM), e.g. Krusell and23

Smith Jr [2022], Cruz and Rossi-Hansberg [2024] and Desmet and Rossi-Hansberg24

[2024].125

The underlying assumption behind these approaches is that the shapes of the26

1Note that Cruz and Rossi-Hansberg [2024], alone among these papers, uses only winter temperatures
(January or July) rather than annual averages [Lemoine et al., 2025].
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spatio-temporal distributions of mean temperatures do not matter. Across time,27

the intra-annual shape of the distribution of daily mean temperature is assumed28

to remain constant: temperature increases due to climate change are shape-29

preserving increases in annual mean. Across space, an average increase in tem-30

perature at global level is assumed to affect the regional annual distribution by31

a linear and time-invariant down-scaling factor such as the regional transient re-32

sponse to cumulative emissions [Leduc et al., 2016].33

The reality of future regional weather changes, however, is more complex, for34

two main reasons. First, natural climate variability over time and space, both35

from external (e.g. solar cycles) and internal factors (e.g. El Niño-La Niña), might36

distort future temperature distributions beyond the annual mean [Schwarzwald37

and Lenssen, 2022]. Second and more fundamentally, the process determining the38

shape of the weather distribution within a given year for a given regional mean39

temperature might not be stationary, so that time-invariant relations between40

annual averages and the intra-annual distribution of weather only imperfectly41

reflect regional-specific shifts in warming patterns. In North-West Europe, the42

hottest summer days are warming twice as fast as mean summer days [Patterson,43

2023]. Cold extremes are anticipated to warm at a faster rate than both hot44

extremes and average temperatures for much of the Northern Hemisphere [Gross45

et al., 2020]. Hot days over tropical land warm substantially more than the av-46

erage day: for example, warming of the hottest 5% of land days is 21% larger47

than the time-mean warming averaged across models [Byrne, 2021]. That opens48



the question around the ‘right’ level of spatial and temporal aggregation for pro-49

jecting future impacts. Aggregation has advantages, as it comes with statistical50

robustness, clear identification of causal relationships, and numerical tractability51

in models where anomaly in climate results from endogenous anthropogenic emis-52

sions; it also has shortcomings, such as the risk of averaging contradictory effects53

between regions both in terms of damage and warming patterns.54

Instead of modeling climate change stemming from anthropogenic carbon emis-55

sions as an endogenous process, some IAMs use spatially disaggregated projections56

from global circulation models to infer the costs of climate change with adapting57

agents [Rudik et al., 2022, Bilal and Rossi-Hansberg, 2023]. In these models,58

which incorporate credible intra-annual climate projections, climate change re-59

mains exogenous to economic activities. As a result, the estimates from the two60

bodies of literature—endogenous and exogenous—have evolved in parallel, yet the61

effects of this divergence on the aggregate and distributional estimates of climate62

impacts remain unclear. We aim to shed light on this apparent gap by testing63

the impact of including regional projections that sample changes in the entire64

intra-annual distribution of temperatures.65

To disentangle these spatial and temporal effects, we follow a two-step approach.66

First, we switch from annual average temperatures to the complete daily tempera-67

ture distribution over a year and show how this affects the heterogeneous distribu-68

tion of warming patterns between regions, compared to a setting where we assume69

a shape-preserving shift in mean annual temperatures under a synthetic changing70
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climate. Second, we interact these regional-specific shifts in warming patterns71

with intra-annual damage patterns, comparing them to a setting where damage72

are inferred from annual mean temperature. Building on work on the non-linear73

effects of temperature on economic activity using temperature bins [Dell et al.,74

2014, Hsiang, 2016, Auffhammer, 2018], we use non-linear dose response functions75

in intra-annual temperatures to capture some of the regional idiosyncrasies in the76

climate-society relationship by considering changes in the intra-annual shape of77

temperature distributions for each aggregate Köppen-Geiger climatic zone: arid,78

continental, polar, temperate, tropical.79

We further probe the consequences of this spatio-temporal aggregation of cli-80

mate projections on quantifying the uncertainty surrounding any best-guess esti-81

mate of future climate damages. Uncertainties abound [Rising et al., 2022, Moore82

et al., 2024, Waidelich et al., 2024]. The quantifiable variance of future projec-83

tions of climate impacts is affected by scenario uncertainty (differences in Shared84

Socioeconomic Pathways,SSPs), model uncertainty (differences in Earth System85

Models’—ESMs’—responses to the SSPs), internal variability (spatio-temporally,86

due to the chaotic nature of the climate and due to regional differences that87

may be hidden by regional aggregation), choices made in post-processing or bias-88

correcting ESM output (including how finely to apply projected changes in cli-89

mate distributions from ESMs), regression uncertainty from the dose-response90

functions, and differences between observational data products used to fit the91

dose-response function and act as a baseline to which future ESM output is com-92



pared. Historically, many studies have relied on global annual average climate93

variables to estimate and project climate damages, thereby overlooking signifi-94

cant sources of internal variability. These include regional disparities in climate95

conditions and the tendency to extract only mean changes from ESM projections.96

This limitation is further exacerbated by the inherent constraints of endogenous97

reduced-form climate models, which struggle to capture future changes in intra-98

annual weather patterns—an aspect that might be better addressed through the99

development of climate emulators [Eftekhari et al., 2024]. We focus on two of these100

uncertainties and their interaction: the sensitivity of economic impact projections101

to an improved sampling of internal variability (through capturing regional dif-102

ferences in impacts) and an improved treatment of ESM output (by capturing103

changes in the full shape of the temperature distribution instead of annual aver-104

ages). We further uncover some of the model uncertainties between ESMs using105

the full shape of warming patterns that is usually reduced by the aggregation106

procedure on a global and annual scale. Lastly, we provide a framework based107

on mean temperature distributions that can be applied to other climate data, for108

instance precipitation patterns [Waidelich et al., 2024], and a quantification to109

show how much the regional-specific shift in the shape of warming patterns in-110

teracting with intra-annual damage patterns matters empirically. We do so both111

at the aggregate level and in the distribution of impacts, with the year 2050 as a112

case study.113

We also contribute to the recent literature and ongoing debate on the appropri-114
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ate estimation of future climate change damages. In a sense, we take the opposite115

approach of Bilal and Känzig [forthcoming], who deliberately avoid disaggregation116

and rely on global annual average temperature to infer future damages. While we117

share their concern that time fixed effects may wash out the common component118

of a shock in the estimation—thereby focusing only on the idiosyncratic regional119

part—we take the opposite stance by zooming in on intra-annual weather changes120

both for the estimation and for climate projections. Our aim is to highlight the121

importance of accounting for both intra-annual variability and regional hetero-122

geneity when assessing idiosyncratic climate damages. Our core intuition is akin123

to a Jensen’s inequality argument: if intra-annual damages are convex in tem-124

perature, then annual averages may be misleading (i.e., temporal heterogeneity125

matters). A next step beyond our current approach would be to develop a frame-126

work that preserves both the idiosyncratic and common components of climate127

shocks in estimation and aggregation, while also moving beyond annual means128

and the global scale to fully capture the spatial and temporal heterogeneity of129

climate impacts from past weather shocks [Lemoine, 2018].130

All this yields two main conclusions. First, switching from annual global mean131

temperature to the regional annual distribution of daily mean temperatures af-132

fects the magnitude of the estimates of economic damages: in 2050, using damage133

patterns interacted with the shift in the whole shape of the distribution of daily134

temperatures yields climate damage at the global scale that are around 25% larger135

than the damage obtained under the assumption of a shape-preserving shift in136



annual mean daily temperature. Standard aggregation leads to an underestima-137

tion of future climate damages. We test this result across a range of SSPs, from138

the least (SSP1-2.6) to the most carbon-intensive (SSP5-8.5), finding a range of139

of 21-28%. Second, we show that the distributional effect is far from clear-cut.140

Uncertainty in the change in the shape of the temperature distributions has wildly141

different effects across regions. In particular, we show that the omitted damages142

are not primarily driven by tail effects. Extreme events alone do not explain the143

intra-annual pattern of damages; rather, the entire distribution of temperatures144

plays a critical role. This effect holds consistently across different temperature145

pathways, both at the regional level and in the aggregate.146

I. Climate and economic data147

A. Warming patterns148

Our main concern is that shifts in the intra-annual distribution of daily mean149

temperatures may not be adequately captured by changes in annual mean temper-150

ature, which preserve the overall shape of seasonal warming patterns. On Figure151

1 below, we illustrate this concern for two scenarios, each involving a +2°C in-152

crease in annual mean temperature. These scenarios are motivated by two stylized153

empirical regularities observed over recent decades. First, cold extremes across154

North America have warmed substantially faster than the winter mean temper-155

ature since 1980 [Blackport and Fyfe, 2024]. Second, the hottest summer days156

in North-West Europe have warmed roughly twice as fast as mean summer days157
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since 1960 [Patterson, 2023]. In the illustrative figures below, North-West Eu-158

rope is shown on the left panel and North America on the right. The top panel159

plots damage functions against the frequency of days in each temperature bin.160

For exposition, we use an inverted bell-shaped damage function, where marginal161

damages rise at both lower and higher temperature levels. The middle panel162

shows the histogram of daily temperatures for three cases: (i) the historical cli-163

mate (green), (ii) a +2°C mean-preserving shift in the temperature distribution164

(blue), and (iii) a +2°C mean increase with a change in shape, characterized by a165

heavier hot tail (orange, left panel) or a reduced cold tail (dark red, right panel).166

The red dotted line represents the difference in frequency (days per temperature167

bin) between the shape-changing and shape-preserving +2°C scenarios, where the168

latter assumes a constant intra-annual temperature distribution. The difference169

between these two distributions highlights omitted days, i.e. specific temperature170

exposures that are not captured when impacts are assessed solely using changes in171

annual mean temperature. The bottom panel quantifies the resulting differences172

in aggregate damages by integrating observed intra-annual temperature distribu-173

tions with the non-linear damage functions shown above. Areas in blue indicate174

higher damages under the shape-preserving shift, whereas areas in orange (for175

Europe) and dark red (for North America) indicate higher damages under the176

shape-changing scenario. The remainder of the paper quantifies the magnitude177

of these omitted damages for different concentration pathways.178

After this stylized illustration, we now turn to climate data for quantification.179
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Figure 1. : Illustrative Top Damage function for different daily mean temper-
atures plotted against the distribution of temperatures. Middle Histogram
of temperatures for historical, shape-preserving and shape-changing 2°C annual
mean temperature increases, Bottom Histogram of damages for historical, shape-
preserving and shape-changing 2°C annual mean temperature increases. Left For
a 2°C mean increase in temperature with an increase in hotter days tail, Right
For a 2°C mean increase in temperature with a decrease in cold days tail.

We compare the distribution of daily mean temperatures in actual climate pro-180

jections to a counter-factual synthetic projection where the shape of the distribu-181

tion remains the same while the mean annual temperature increases, a standard182

assumption in the literature. We build different climate landscapes, where ‘cli-183

mate’ is defined as the underlying distribution, from which a specific regional184
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temperature distribution over a year is drawn [Waidelich et al., 2024]. We use185

CMIP6 bias-corrected and downscaled data at a resolution of 60 arc-minutes186

from five earth system models (ESM) stored in ISIMIP Protocol 3B [Frieler187

et al., 2023]: GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MPI-ESM2-0,188

UKESM1-0-LL. ISIMIP subset of climate models and de-biasing techniques were189

designed to assess impacts of climate change and to span the larger ensemble190

of CMIP models [Warszawski et al., 2014]. Thus, our illustrative study under-191

estimates inter-model uncertainty among the over 100 CMIP6 models. Data is192

available for three shared socioeconomic pathways (SSP 1-2.6, 3-7.0, 5-8.5). We193

construct three different climate landscapes for each SSP. The first is the cli-194

mate landscape without climate change, the ‘control’ climate: it is the mean195

distribution of ‘picontrol’ time series experiments run over 2006 to 2100 with196

pre-industrial CO2 concentration. The second is the landscape from actual cli-197

mate projections which consists of bias-corrected, downscaled output from five198

ESMs forced with future emissions from three different SSPs, the ‘projection’199

climate: we use the average of the 10-year distribution around a date to ap-200

proximately capture the underlying distribution from which the specific weather201

realization from a specific year is drawn, i.e. 2045-2055 in our example2. This202

landscape samples scenario uncertainty, inter-model uncertainty, and regionally203

specific changes in the shape of daily mean temperature distributions. The third204

2On the one hand, adding more years around 2050 would enable us to capture more of the internal
variability which characterizes 2050 climate [Schwarzwald and Lenssen, 2022], for instance more El Niño
cycles. On the other hand, it would come with a costly assumption of perfect symmetry around 2050 in
climate change dynamics. By capturing less internal variability, we probably under-count the impact of
including regional information.



climate landscape is a ‘synthetic’ landscape, where we add for each temperature205

observed in the ‘control’ climate of each of the five ESM the mean of the change206

in annual temperature in ‘projection’ climate in this specific ESM. This yields207

a ESM-specific shape-preserving mean-shifted climate. This landscape samples208

scenario uncertainty, inter-model uncertainty, and regional differences in mean209

changes. Synthetic climates are constructed at a high level of precision3 (0.01°C).210

Rather than aggregating this data at the global scale, we construct regional211

climate landscapes. Indeed, using a global dataset means that locations in which212

a given temperature is relatively cold and places in which the same temperature213

is relatively warm fall within the same bin of temperature, which distorts the214

picture of regional climate shifts, and biases the estimates used to convert these215

climate shifts into economic damage. We aggregate at the level of five major216

Köppen regions [Beck et al., 2023]: arid, continental, polar, temperate and trop-217

ical. It is reasonable to think that these climate classifications are both good218

ensembles in terms of warming patterns but also in terms of damage patterns219

to capture differences between relatively homogeneous regions. If the differences220

between damage patterns differ for many other reasons (e.g. cultural and polit-221

ical), we capture some of the regional heterogeneity due to climatic conditions.222

When building these climate landscapes, we keep only locations for which we have223

economic data to estimate dose-response functions below and treat each of these224

3Because we shift distributions using granular data, this process is computationally intensive. Since
damages are estimated from binned data, the binning procedure can slightly alter the distribution when
shifting the data. As a rule of thumb, we ensure ex post that the annual mean temperature of the
synthetic climate closely matches that of the projected climate, with a tolerance on the order of 10−2.
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economic region within each climatic Köppen region as a single unit.225

B. Econometric estimates of climate damages226

The next step to compute damages that might be omitted from the spatial and227

temporal aggregation of climate projections is then to combine the omitted shift228

depicted in Figure 2 with non-linear dose-response functions of GDP to binned229

daily mean temperatures. For the empirical analysis we combine Wenz et al.230

[2023]’s Database Of Sub-national Economic Output (DOSE v2) with Hersbach231

et al. [2020]’s climate reanalysis (ERA5). We process the climate reanalysis by232

first calculating degree-days at the grid-cell level and then aggregating to DOSE233

regions. We use the combined data to estimate dose-response functions of GDP234

growth to daily mean temperatures. We estimate the model:235

(1) git = αi + Pitβ +

B∑
b=1

nbitγb + µt + ϵit

with the growth rate of GDP per capita PPP in USD in administrative unit i in236

year t as git, with the number of days with daily mean temperature in the bin237

indexed b as nbit, and with total annual precipitation Pit. Note that here, Pit238

is indeed only a control, focused on annual totals, rather than daily ones [Kotz239

et al., 2022]. The model also includes region fixed effects αi and year fixed effects240

µt. Errors ϵit are clustered at the level of countries to account for spatial and241

temporal autocorrelation. Our main parameters of interest are the coefficients of242

temperature bins γb which represent the non-linear association between daily tem-243



perature levels and economic growth. The 2°C temperature bins are winsorized244

at level 99% for econometric estimation to limit the influence of rare events for245

which we do not have sufficient observations. Furthermore, we follow Cruz and246

Rossi-Hansberg [2024] and smooth the behavior of the point estimates across247

temperature bins on the whole temperature distribution in 2050 with degree-two248

polynomials, assuming that temperature effect on growth changes remains con-249

stant above and below our upper and lower bins used for the estimation. We also250

weigh each point estimate by the inverse of their standard errors to provide a251

greater weight to the more accurate estimates.
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252
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C. Descriptive statistics253

Figure 3 gives summary statistics for the warming and damage patterns of254

each region in 2050 for SSP5-8.5. Graphs on the left plot the distribution of255

mean daily temperatures for all climate landscapes, taking the average of all256

five earth system models. The distributions have different shapes, both in terms257

of their dispersion and their mean. The shifts in the average temperature are258

also of different magnitude, which is consistent with the observation of spatially259

heterogeneous global warming. Shifts in shapes are also diverse, and not just260

because of the initial shape of each distribution as we show on the graphs on261

the left. These graphs describe the difference between the ‘synthetic’ and the262

‘projection’ landscapes for different earth system models: for each temperature263

level, it gives the difference in frequency between two distributions. The first264

distribution is constructed by adding to each daily temperature for each climate265

model the mean of the annual anomaly observed in that model, thus obtaining266

a shape-preserving shift in mean, which is the assumption generally made in the267

literature. The second distribution is taken from climate model projections of268

daily mean temperatures. These difference can have opposite signs and various269

magnitude depending on the model considered.270
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II. Quantification271

A. Missing shape-related growth effect of climate change272

We express the GDP growth effect of daily temperatures in climate projections273

as a share of this effect in synthetic climate, i.e. in a setting where we assume that274

the shape of the distribution of daily temperatures remains the same when the275

mean increases. Indeed, we want to measure how much the change in the shape of276

the distribution of daily mean temperatures matter for the estimation of economic277

damages. To have a measure that approaches standard climate damages, growth278

effects in warming climates are expressed with respect to growth effects in control279

climate. Growth effect at each bin b is γb. We apply a double difference procedure280

to find the change in growth effect between synthetic climate and projections. The281

share of the climate growth effect underestimated by the aggregation of climate282

data under synthetic climate in a given area writes:283

(2) DDω = 100 ∗ Ωω,synthetic − Ωω,projections

|Ωω,synthetic − Ωω,control|

where, for a given SSP and earth system model in year 2050 in our climate land-284

scape C (control, projections, synthetic) for a given dose-response function ω in285

sub-administrative region DOSE d in Köppen-Geiger climate zone k, damage is286

Ωglob,C
ymd =

∑
b γbt

C
bymd. This estimate reflects the percentage increase (or decrease)287

in damages that results from omitting the shape change, relative to the standard288

damage estimates based on a shape-preserving synthetic shift in the mean. We289



take the absolute value in the denominator because it is possible that welfare290

could increase under climate change scenarios. Using the absolute deviation en-291

sures that, regardless of whether climate change implies welfare gains or losses, a292

positive normalized difference consistently indicates that we underestimate dam-293

ages (or overestimate the benefits) of climate change in the projected scenario.294

B. Aggregate impacts295

While we build regional climate landscapes that use the granularity given in296

climate datasets rather than too aggregated information to discuss climate pol-297

icy, we seek for global indicators that can easily be applied to aggregate economic298

models. We compute for each DOSE region within each larger Köppen-Geiger299

zone the share of missing growth due to disaggregated warming and damage pat-300

terns. We use area-weighting to build DOSE-level estimates of missing growth301

from DOSE*Koppen estimates. For the sake of transparency and to avoid reas-302

signing DOSE regions—on which the dose-response function was originally esti-303

mated—based on shifting Köppen-Geiger zones, we assume that DOSE regions304

retain their current Köppen-Geiger classification in 2050. While the distribution305

of Köppen-Geiger zones might change under a changing climate [Beck et al., 2023],306

such estimated shifts (13% transition at 1km resolution in the worst SSP5-8.5 by307

2100) would introduce an additional layer of uncertainty into our estimates.308

We then aggregate the DOSE-level growth effect to the global scale based on the309

share of each zone in global GDP in 2015,sω = GDPω/
∑

j GDPj . As for Köppen-310
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Geiger region, we do not add a layer of uncertainty related to future growth paths311

under different SSP. When aggregating across regions to assess the absolute effect312

in terms of growth, it is essential to account for the absolute change between313

the synthetic and historical climate. Using only the relative measure DDω fails314

to weight for the fact that different regions experience different magnitudes of315

climate impact. Our final weighted variable of interest therefore captures the316

share of aggregate damages that are omitted due to the structure of the global317

aggregation procedure.318

(3) DDglobal =

∑
ω (DDω · sω · wω)∑

ω sω · wω

where the weighting wω is: wω = |Ωω,synthetic − Ωω,control|. On Figure 4, we plot319

our estimate of the share of missing growth effects for each ESM and the mean320

across ESM. The assumption made in the literature of a shape-preserving shift321

in mean annual global temperature interacted with global damage patterns thus322

yields biased estimates of future economic damages of climate change. This bias is323

an underestimation of future damages: accounting for the shift in regional shape324

would increase the actual damage by on average 25% (21-28% depending on the325

SSP, 4-46% depending on the ESM and the SSP) in 2050. The shift in shape326

matters also for less carbon-intensive pathways.327

Overall, this shift in the aggregate profile of climate impacts should motivate328

stronger mitigation and adaptation efforts, as intra-annual changes in the temper-329
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Figure 4. : Global DD for each ESM and the average over ESM.

ature distribution lead to greater overall damages. But what are the distributional330

effects of these omitted intra-annual shifts in warming patterns?331

C. Distributional impacts332

Thus far, we have focused on the aggregate impact of the omitted shift in the333

regional shape of daily temperature distributions. We now turn to the distri-334

bution of damages. The table below reports, for each Köppen-Geiger region,335

its share of global GDP in 2015, the absolute damage in synthetic climate in336

comparison with control climate and the percentage of damages that are un-337
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derestimated across different SSPs. Several key conclusions can be drawn. Ig-338

noring the intra-annual distribution of temperatures in all regions means un-339

derestimating damages. This underestimation can be substantial—for instance,340

in polar regions—but its overall impact is limited due to either the low abso-341

lute change in damages between control and synthetic climate within those areas342

or the small share of these regions in global GDP. The share of each region is343

DDi
share =

(
DDi · si · wi

)
/
∑

ω (DDω · sω · wω).

SSP Arid (12% of GDP) Continental (27% of GDP) Polar (1% of GDP) Temperate (53% of GDP) Tropical (8% of GDP)
1-2.6 2.91 [2.406] 57.07 [2.253] 2387.78 [0.02] 29.45 [2.369] 0.8 [9.066]
3-7.0 7.24 [2.297] 47.28 [2.851] 569.77 [0.092] 13.1 [2.718] 26.12 [5.823]
5-8.5 4.34 [2.229] 54.88 [3.007] 528.73 [0.113] 16.47 [2.793] 77.22 [4.568]

Table 1—: DD (in %) and [absolute synthetic damage] for different SSP in each
Köppen-Geiger zones (with their share in 2015 GDP).

344

When we decompose by temperature levels to identify whether hot or cold345

days are responsible for the omitted damages in the shape, we find that the pic-346

ture depends on the Köppen-Geiger zone considered but remains stable across347

SSPs. The share of each bin b as a share of region i damage is: DDshare
i,b =348 (

DDb · wb

)
/
(
DDi · si · wi

)
. In the figure below, we plot—for each SSP— how349

each temperature level contributes to the overall aggregate damage. In red (blue),350

the bin contributes positively (negatively) to the overall underestimation of dam-351

ages. These results are obtained interacting the climate shifts from Figure 2 with352

the damage function from Figure 3.353

While one might expect tail effects to be driving our results, it turns out that354

it is not only extreme events that matter for welfare. Most of the omitted shift355



ssp126
ssp370

ssp585

−2
0 0 20 40

−10

0

10

20

−10

0

10

20

−10

0

10

20

Daily mean temperature (°C)

C
on

tr
ib

ut
io

n 
of

 te
m

pe
ra

tu
re

 b
in

 (
in

 %
 o

f o
m

itt
ed

 d
am

ag
es

)

Figure 5. : Temperature levels contribution (in %) to global under-estimated
damages between projections and synthetic climate for each SSP (rows). In red
(blue), the bin represent a positive (negative) share of the overall underestimation.
We limit the x-axis to [-20:40], average the effects over 1°C bins and scale the effect
so that the total sums to 100%.

between synthetic and projection climates in Figure 5 are indeed located along356

the whole distribution rather than concentrated in extreme temperature levels.357

Thus, changes across the entire shape of the intra-annual temperature distribution358

are important. The observed changes in distributional shape exhibit consistent359

patterns across all SSPs. This should encourage caution in relying on thresholds or360

arbitrary moments of the temperature distribution for projecting future damages.361
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III. Conclusion362

Linear relationships are isomorphic to aggregation and other mathematical363

transformation. Climate-society relationships, meanwhile, are famously nonlin-364

ear. Disaggregating spatial and temporal climate responses matters. Indeed,365

switching from global annual mean temperatures to regional distributions of daily366

mean temperatures affects the magnitude of economic damages from climate367

change, since the shape of the intra-annual temperature distribution is neither368

fixed across space or time. Spatio-temporal disaggregation, thus, reveals how un-369

certainty between climate models on the entire shape of the distribution of future370

weather realizations cascades down to regional damage estimates. Accounting371

for daily temperatures rather than annual averages increases the estimation of372

economic damages, a finding consistent with previous studies with daily temper-373

atures [Rudik et al., 2022] or seasonality [Estrada et al., 2025].374

In 2050, under all SSPs, using non-linear intra-annual damage patterns inter-375

acted with the shift in the entire shape of the distribution of daily temperatures376

yields climate damages at the global scale that are on average 25% (21-28%, de-377

pending on the SSP) larger than the damage obtained under the assumption of378

shape-preserving shift in annual mean daily temperature. The shape uncertainty379

about shifts in daily temperature distributions should therefore be taken into380

consideration for decision-making. We show that the omitted damages are not381

primarily driven by tail effects, but are distributed across the full range of daily382

mean temperatures. Extreme events alone do not account for the intra-annual383



damage pattern; instead, the entire temperature distribution plays a critical role.384

To our knowledge, we provide the first comparison between various approaches385

to spatial and temporal aggregation regarding impacts of changes in mean surface386

temperatures on economic activity and quantify how much these often-overlooked387

aggregation procedures matter empirically. We believe that this procedure can be388

reasonably translated vertically and horizontally. Vertically, this framework can389

be applied to other economic damages stemming, for instance, from changes in the390

shape of the annual distribution of daily maximum temperatures. Horizontally,391

the framework could be used to infer results in regions for which we do not have392

socioeconomic data to estimate damage functions. Here we have kept the DOSE393

regions for the sake of consistency. But using Köppen-Geiger climatic zones, i.e.394

widely available physical data, to build ensembles and generalize the results over395

these ensembles could be a useful detour at first, alongside a necessary deepening396

in the availability of socioeconomic data, particularly in Africa.397

Our analysis also comes with limitations. In particular, our estimation of re-398

gional damage functions is based on the idea that differences in the economic dam-399

age caused by weather—and therefore by climate change—is intimately linked to400

climatic zones. However, there are many factors that go well beyond geographi-401

cal determinism that we do not explore here. Furthermore, Earth System Models402

are imperfect, and some may not be able to capture well the shape (or changes403

in the shape) of the temperature distribution [Kornhuber et al., 2023]. When it404

comes to estimating the future damage of climate change, other approaches use405



CLIMATE SHIFT UNCERTAINTY 25

annual temperature [Bilal and Känzig, forthcoming] and, thus, avoid the problem406

of time-fixed effects, which erase a large portion of climate impacts. The question407

of aggregation is less of an issue in this case, as these approaches consider an-408

nual temperature to be a sufficient statistic for estimating impacts. Nevertheless,409

the question of the relevance of past natural variability as a proxy for global an-410

nual climate change based on complex processes and rising carbon concentration411

remains, and is left for further research.412

Another limitation lies in defining a rule of thumb that holds universally—across413

different parts of the world (e.g., tropical vs. temperate regions) and under various414

future climate scenarios (e.g., with more or less severe climate disruption)—for415

how far one should go in disaggregating climate variables. Beyond daily mean416

temperature, one could further investigate repeated events with potentially non-417

linear impacts, interactions between temperature and precipitation to account for418

wet-bulb effects, or distinguish between daytime and nighttime temperatures to419

better capture the nature of heatwaves, among others.420

Finally, while we studied variations of damage patterns in space and time, we421

have left out the question of variation of damage patterns with societal adapta-422

tion to climatic changes, what has been dubbed a ‘swinging climate’ [Mérel et al.,423

2024]. How might a given daily temperature yield different damages in any par-424

ticular region as it moves away from its normal climatic zone? That raises the425

question of how adaptation might interact with the entire distribution of climatic426

factors, a question similarly left for further research.427



Appendix A. Building climate landscapes428

We scale the frequency of observations by the share of land area in each cell429

using GPW4 dataset. We compare changes in shapes of daily mean tempera-430

ture distributions Tmr in five Köppen regions r and climate model m, i.e. the431

distribution of all Tmr daily mean temperatures in region r and model m, in432

three different climates C. Climate C are: a control climate, ISIMIP projec-433

tions, the synthetic distribution. We bin the temperature distributions t at434

0.01°C: f(.) is a function that bin the distributions. Our final landscapes for435

each year are: (1) control climate, without climate change T control
mr = f(tcontrolmr ),436

(2) ISIMIP projections T proj
mr = f(tprojmr ), (3) Synthetic with model average are437

built by adding the difference between binned projections and control climate,438

T synth.model
mr = f

(
tcontrolmr + T proj

mr − T control
mr

)
.439

Appendix B. Köppen regions440

Appendix C. More results on the distributional aspects441

I plot the distribution of relative DD for each region and SSP for different ESM.442

The x-axis is signed log scale as the relative estimates can have large absolute443

values. Indeed, these relative changes in damage are not weighted by the absolute444

climate damage.445

I plot the share of each 1°C temperature bin of damages in the under or over-446

estimation of damages in each SSP and Köppen-Geiger region . The intra-annual447

patterns (sign, not magnitude) are stable across SSP in each region.448
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Köppen regions

ARID

CONTINENTAL

POLAR

TEMPERATE

TROPICAL

Figure 6. : Köppen climatic zones

[Beck et al., 2023]

We plot the distribution of absolute damages and omitted damages (DD) over449

the world for DOSE regions.450

There is a low positive correlation of omitted damages (regional DD) with451

income, even if the data are scattered. We do the same for the absolute change452

in damage.453

Appendix D. Results from econometric specification454

These are the regression results for our benchmark dose-response function.455

Appendix E. Results with alternative dose-response functions456

We estimate dose-response functions with the same specification except that git457

is not GDP growth but level. Global DD remains robust.458
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