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Abstract

We assess how changes in the scientific consensus around equilibrium climate sensitivity (ECS), as

captured by the IPCC’s Fifth (AR5) and Sixth (AR6) Assessment Reports, impact policymakers’

willingness to take climate action, including through increasing subsidies to investments that will

help to deliver the clean energy transition. Taking the IPCC’s reports at face value, the ECS

estimates in AR6 would have lowered a policymaker’s willingness to act on climate relative to

AR5 due to a narrower “likely” range. However, Bayesian updating may reverse this conclusion.

An accuracy-motivated policymaker who was not convinced to take greater climate action by the

evidence in AR5 may be more likely to increase their investment in clean energy by the evidence

in AR6.
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1. Introduction

Equilibrium climate sensitivity (ECS) parameterizes the estimated change to global average

temperatures over the course of centuries that will be caused by a doubling of concentrations of

carbon dioxide (CO2) in the atmosphere (Proistosescu and Huybers, 2017). The earliest expert

assessment, conducted by the U.S. National Academy of Sciences in 1979, arrived at a “likely”

range of 1.5◦C − 4.5◦C (National Research Council, 1979). While the definition of what it means

to be “likely” has become more precise over time (Bradley et al., 2017)—the Intergovernmental

Panel on Climate Change (IPCC) now defines it as occurring with at least a 66% probability

(Mastrandrea et al., 2010)—the range itself had remained steady at 1.5◦C − 4.5◦C for most of

the IPCC’s history (IPCC, 1990, 1995, 2001). The first exception came in the Fourth Assessment

Report, which narrowed the range to 2◦C − 4.5◦C (IPCC, 2007), only to widen it again in the

Fifth Assessment Report (AR5) to 1.5◦C − 4.5◦C (IPCC, 2013). In part based on a comprehensive

re-assessment of the ECS evidence (Sherwood et al., 2020), the IPCC has since narrowed the range

in its Sixth Assessment Report (AR6) to 2.5◦C − 4◦C (IPCC, 2021).

This paper focuses on the way that these changes in ECS estimates are assimilated by a policy-

maker and how this then alters their willingness to act to prevent climate change. This is measured

by the amount they would be prepared to pay to prevent all future climate change damages through,

for example, investment in the clean energy transition that is needed to deliver net zero in human-

caused greenhouse gas emissions. In contrast to much of the related previous literature (e.g., Hwang

et al. (2017)), we recognize that those with the seniority to make substantive differences to climate

policy are likely to only pay serious attention to the scientific consensus periodically, rather than

continually keeping up-to-date with new findings as they are shared among the research community.

We specifically consider how such senior policy-makers will change their willingness to act on the

release of a single IPCC report, which presents significant new information about the ECS to them

even though the scientific community may have already anticipated many of the findings.

We consider two separate situations. In the first, the policymaker simply adopts the latest

IPCC’s range as their own. In this case, they would interpret the AR5 widening of the range as a

prompt to increase the willingness to act to cut CO2 emissions (Freeman et al., 2015). Uncertainty,

after all, is costly, with ECS uncertainties among the most important factors in strengthening the

economic case for cutting CO2 emissions (Moore et al., 2024; Weitzman, 2009). Conversely, this

might turn the step taken in AR6 into “good news”— as the narrowing of ECS range from AR5 to
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AR6 now suggests a lowered need to act. Our first result confirms that this is the case.

Our primary contribution—presented as the second result—comes from recognizing that policy-

makers who read either AR5 or AR6 have prior beliefs about the ECS. Under such circumstances,

they may choose to Bayesian-update their position in light of new expert information. We assume

that such a policymaker is accuracy-, rather than directionally-, motivated (Druckman and Mc-

Grath, 2019). They evaluate information in an ‘objective manner’ that is not influenced by their

prior belief, and do not suffer from discomfirmation bias by rejecting information that does not sup-

port their existing policy position. Instead they apply Bayes’ Theorem rationally and accurately

based on the scientists’ own assessment of the remaining uncertainties surrounding the ECS.1

We find the necessary and sufficient conditions under which such an accuracy-motivated Bayesian

policymaker who previously had a willingness to act below that implied by either AR5 or AR6—an

assumption which appears consistent with existing policy (Drupp et al., 2024)—will then increase

their willingness to act due to the IPCC updating its ECS range. Contrasting with our first result,

we prove that AR6 has strictly greater power than AR5 to cause such a policymaker to take stronger

action by, for example, providing greater subsidies for new clean energy technologies.

Our results have another important implication. It has been observed that, when shown the

scientific consensus on climate change, people are “. . . more likely to report believing that climate

change was already underway and that it was caused by humans. However, their beliefs about

the necessity of making policy decisions and their willingness to donate money to combat climate

change were not affected” (Deryugina and Shurchkov, 2016, p.1). The authors explain that the

“. . . lack of updating based on objective information in this context is consistent with a number

of explanations, including strong priors, self-justification bias, selective attention, cultural norms,

partisan bias, and information discounting” (Deryugina and Shurchkov, 2016, p.12). Yet, within

the Bayesian updating model that we present, such behavior can also be explained fully rationally.

An increased expectation of future temperature changes can co-exist with a lowered willingness to

act if new information results in sufficiently more precise estimates of the ECS.

1This also contrasts with, for instance, Augenblick et al. (2024), who examine how people apply Bayes’ Theorem
imprecisely when updating their views. Our work echoes Hwang et al. (2017), who also considers how Bayesian
learning affects energy policy choices, although here our focus is not on the optimal timing of irreversible investment.
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2. Policy response to new scientific information

Under a set of plausible assumptions, the willingness to act to fully prevent future climate change

damage is monotonically increasing both in the expected ECS value and its uncertainty. For the

former, the more we expect human greenhouse gas emissions to increase global temperatures, the

more pressing climate change becomes as a policy priority. But “... the economic case for stringent

GHG abatement cannot be made based on ‘most likely outcomes’ ... (instead) any case for stringent

abatement must be based on the possibility of a catastrophic climate outcome” (Pindyck, 2013,

pp.234–5). The more uncertain we are about the ECS, the more we will do to prevent future

emissions in an attempt to avert the most damaging plausible outcomes. Mathematically, we

denote ECS here by T , and it has previously been shown that the willingness to act is monotonically

increasing in E[T 2] = E2[T ] + Var[T ] (Freeman et al., 2015, see also Appendix A).

The central purpose of this paper is to consider how an accuracy-motivated policymaker will

re-evaluate their willingness to act when presented with the latest scientific consensus evidence on

the ECS. Since this is determined through E[T 2], it is necessary to consider how the probability dis-

tribution for T changes based on this new information. This task requires us to clearly differentiate

between five distinct probability density functions. The first two of these capture the distribution

of T that can be inferred from the IPCC’s AR5 and AR6 reports (pdf1 and pdf2, respectively).

Our first result shows that, because the spread of ECS estimates is much narrower in AR6 than

AR5 even for a higher mean, the willingness to act is lower under AR6 than under AR5. Stated

mathematically, this is equivalent to saying that E[T 2] is higher under pdf1 than pdf2.

IPCC reports, though, feed into the policy process through the human actions of policymakers

who do not receive these reports with a previous blank slate of opinions on matters related to the

ECS. Specifically, we focus on policymakers with a “low prior” in the sense that E[T 2] is lower

under their initial beliefs (pdf3) than either pdf1 or pdf2, which would therefore result in the

policymaker initially taking actions on the clean energy transition and other policies that will help

achieve net zero below what AR5 or AR6 would justify. The final two probability distributions

that we consider assume that the policymaker is given either AR5 or AR6 to read, and that they

then Bayesian update their beliefs based on this report.2 We assume that that they undertake

2We do not consider the situation where the policymaker is initially given AR5 to update their beliefs and then,
subsequently, AR6 to update their beliefs for a second time. This is because the overlap of information in the two
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this updating in a way that is fully accuracy-motivated, that they apply Bayes’ Theorem without

behavioral biases or errors, and that they accept the IPCC’s estimates of the ECS as presented.

They use Bayes’ Theorem in this way because “French (1985), Lindley (1985), and Genest and

Zidek (1986) all conclude that for the typical risk analysis situation, in which a group of experts

must provide information for a decision maker, a Bayesian updating scheme is the most appropriate

method”(Clemen and Winkler, 1999, p.190); see also (Vivalt and Coville, 2023). Their Bayesian

posterior distribution is denoted by pdf4 (pdf5) if they revised their views based on AR5 (AR6).

Our second result is that AR6 has strictly stronger power to persuade this policymaker to

increase their willingness to act through, for example, providing greater subsidies for the clean

energy transition, than does AR5. This is paradoxical because, when taken at face value, AR6

is “good news” compared to AR5. Yet this result follows from the way that the policymaker’s

estimates of E[T ] and Var[T ] change under a Bayesian approach and how this contrasts with the

mean and variance of the expert opinion when taken in isolation.3

3. The scientific consensus and the policymaker’s prior

To establish and quantify these results, we must first parameterize pdf1, pdf2 and pdf3 and

then, in the next section, use Bayesian updating under expert information to derive pdf4 and pdf5.

pdf1. We parameterise the relevant section of AR5 (IPCC, 2013, Section TS5.3) following a

lognormal distribution (Sherwood et al., 2020; Wagner and Weitzman, 2018; Weitzman, 2009, 2007),

by setting ln(T ) ∼ N(ϕAR5,Σ
2
AR5) for expected value ϕAR5 = 0.9983 and standard deviation

ΣAR5 = 0.5742 of the variable’s natural logarithm. This sets the expected value of the ECS

EAR5[T ] = 3.2◦C and its standard deviation T = 2◦C, and captures that the distribution is heavy-

tailed. Consistent with AR5, there is a 66% chance that T lies in the 1.5◦C − 4.5◦C range, a less

than 5% chance that T < 1◦C and a less than 10% chance that T > 6◦C.4

pdf2. Similarly, for the relevant section of AR6 (IPCC, 2021, Section TS3.2.1), set ln(T ) ∼

reports is too great to separate out within this type of analysis. Similarly, we assume that the forecasting errors
between the policymaker’s prior and either AR5 or AR6 are independent from each other (Appendix B).

3We stress that our results focus on ECS estimates alone. A better quantification of damages, for example, or
any number of other updates between AR5 and AR6, will also heavily impact on the Social Cost of Carbon (Moore
et al., 2024; Hänsel et al., 2020; Rennert et al., 2022).

4Specifically, 66.0%, 4.1%, and 8.4%, respectively.
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N(ϕAR6,Σ
2
AR6) for parameters ϕAR6 = 1.1654 and ΣAR6 = 0.2390, so that the expected value

is EAR6[T ] = 3.3◦C and the standard deviation is T = 0.8◦C. This is consistent with the AR6

assessment that there is at least a 66% chance that T lies in the 2.5◦C − 4◦C range, a greater than

90% chance that T lies in the 2◦C− 5◦C range, that there is a less than 1% chance that T < 1.5◦C

and that T = 5◦C is, with medium confidence, at the “upper end of the very likely range” (IPCC,

2021; Bradley et al., 2017).5

pdf3. The policymaker’s Bayesian prior distribution for T is also assumed to be lognormally

distributed, ln(T ) ∼ N(µ, σ2) with µ = 0.3466, σ = 0.8326. Their beliefs correspond to a mean and

standard deviation of T = 2◦C. As a consequence, they think there is a 4.1% chance that T > 6◦C,

a 39.0% belief that it lies in the AR5’s central range of 1.5◦C − 4.5◦C, and a 33.9% chance that

T < 1◦C. This policymaker is therefore moderately less concerned about the potential climatic

effects of greenhouse gas emissions than the IPCC consensus under either report.

We plot the AR5 distribution (pdf1) in panels (a)–(b) of Fig. 1. where the former shows the full

distribution and the latter the right-hand tail. Similarly, we plot the AR6 distribution (pdf2) in

panels (c)–(d) of Fig. 1. The policymaker’s prior distribution (pdf3) is plotted in all four panels. For

a lognormal distribution, E[T 2] = exp(2(ϕ+Σ2)). As ϕAR5+Σ2
AR5 = 1.328 > 1.223 = ϕAR6+Σ2

AR6,

EAR5[T
2] > EAR6[T

2]. If the policymaker were, on reading the IPCC reports, to just accept these

implicit distributions in AR5 or AR6 as given, the change in ECS description in AR6 reduces the

willingness to act compared to AR5 because the increased precision offsets the small increase in

mean estimate of T . This is our first result. The policymaker’s prior (pdf3) is a “low prior” in that

their willingness to act, which is determined by µ+σ2 = 1.040, lies below that implied by the ECS

descriptions in either AR5 (pdf1) or AR6 (pdf2).

4. Change in a Bayesian policymaker’s willingness to act

In light of the expert opinion contained in a new version of an IPCC report, an accuracy-

motivated Bayesian policymaker will update their beliefs in a way that is related to, but clearly

distinct from, how one would update beliefs when encountering new empirical data; e.g. (Clemen

and Winkler, 1999; Genest and Zidek, 1986; Morris, 1974); see Appendix B.

5Specifically, 67.4%, 94.4%, 0.1% and 96.8%, respectively.
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pdf4. After reading AR5 (but not AR6), the posterior distribution of the policymaker is lognormally

distributed ln(T ) ∼ N(µ′
AR5, σ

′2
AR5) with µ

′
AR5 = 0.7882 and σ′

AR5 = 0.4727. AR5 moves the centre

of the distribution of the posterior to the right: E[T ] increases from 2◦C to 2.46◦C. However, the

tail of the posterior is thinner than the tail of the prior in pdf3; Prob(T < 6◦C) falls from 4.1% to

1.7%.

pdf5. After reading AR6 (but not AR5), the posterior distribution of the policymaker is lognormally

distributed ln(T ) ∼ N(µ′
AR6, σ

′2
AR6) with µ

′
AR6 = 1.1030 and σ′

AR6 = 0.2297. AR6 moves the centre

of the distribution of the posterior further to the right than AR5 did: E[T ] now increases to 3.09◦C.

However, the right hand tail of the posterior becomes even thinner than before as Prob(T < 6◦C)

falls to 0.1%.

We plot the posterior probability distribution after reading AR5 (pdf4) in panels (a)–(b) of

Fig. 1., where the former shows the full distribution and the latter the right-hand tail. Similarly,

we plot the posterior probability distribution after reading AR6 (pdf5) in panels (c)–(d) of Fig. 1.

We now draw distinctions between three separate effects: (i) that the policymaker has a low

prior; (ii) that receiving an IPCC report increases the policymaker’s expected ECS; and (iii) that

receiving an IPCC increases the policymaker’s willingness to act. As defined earlier, condition (i)

is equivalent to E[T 2] being lower under pdf3 than both pdf1 and pdf2. (ii) is equivalent to E[T ]

being higher under pdf4 and/or pdf5 than under pdf3. (iii) is equivalent to E[T 2] being higher

under pdf4 and/or pdf5 than under pdf3. More formally, the policymaker has a low prior if and

only if ϕ > µ + σ2 − Σ2. In Appendix B, we show that the other two conditions are given by (ii)

ϕ > µ+ 0.5σ2 and (iii) ϕ > µ+ σ2.

These relationships show that the assumption that the policymaker has a low prior is not, on

its own, sufficient for either the second or third conditions to hold.6 In addition, while expert un-

certainty around ln(T ) (as captured by Σ in pdf1 and pdf2) will directly influence the policymakers

willingness to act if they adopt the IPCC’s assessment as their own, this variable does not influence

whether or not a Bayesian policymaker will be increase their mean estimate of the ECS, or be more

willing to act, after reading an IPCC report; conditions (ii) and (iii) are not a function of Σ. This

is because a change in Σ has offsetting effects. The more certain the experts are in their estimate,

6In Appendix B we prove that these three, and two other, related conditions are clearly distinct in the sense that
none is a necessary and sufficient condition for any other.
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the more the policymaker will change their estimate of the mean of ln(T ) towards the scientific

consensus. However, the more certain the experts are, the narrower the posterior distribution of

ln(T ) will be. These two effects exactly offset in their influence on both E[T ] and E[T 2].

Interpreting this within the parameterizations in this paper, E[T ] increased in both cases in

the posterior (pdf4 and pdf5) relative to the prior (pdf3), but this need not always be the case.

For the third condition, under pdf3, µ + σ2 = 1.040, and so the assessment of the ECS in AR5

(ϕAR5 = 0.9983) does not increase their willingness to act on climate action. By contrast, the

evidence in AR6 (ϕAR6 = 1.1654) would. This is somewhat paradoxical given our first result.

More generally, as ϕAR6 > ϕAR5, AR6 has strictly more power to persuade the policymaker to

increase their willingness to pay to prevent future climate damage, including through subsidies to

help deliver the clean energy transition, than AR5 would if the policymaker is presented with only

one of these reports.

5. Conclusion

A range of sensitivity analysis, available on request from the authors, shows that our two general

conclusions hold under broadly relevant assumptions. This should not be surprising, as the intuition

is both straightforward and generalizable to other settings. When the policymaker with a low prior

Bayesian updates their beliefs, their mean estimate of T is likely (but not certain) to increase,

while Bayesian posteriors will be more precise than their priors. Therefore, E[T 2] = E2[T ]+Var[T ]

generally has offsetting terms that support our second result. The overall impact of the Bayesian

updating process on the willingness to act, thus, might be considered ambiguous. We here show

that ECS estimates in AR6 lead to a lower willingness to act than those in AR5 without Bayesian

updating, while the ECS estimates in AR6 nevertheless have strictly greater power to persuade the

policymaker to change their policy views in favor of greater willingness to act on energy and climate

policies.

By considering what happens when policymakers Bayesian update their views on the ECS

after receiving new scientific information, we speak to two related areas of the literature. First,

the way that IPCC updates to expected ECS values, uncertainty ranges, and confidence intervals

are presented, and communicated have been shown be crucial to how policymakers perceive and,

ultimately, act on the results (Kopp et al., 2023; Bradley et al., 2017). Yet those moderately hesitant

to embrace climate-scientific results have been shown to be more willing to believe in climate change
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after reading scientific evidence, yet no more willing to take action to prevent it (Lewandowsky,

2021; Kahan, 2016; Bolsen and Druckman, 2016; Deryugina and Shurchkov, 2016). Our results

provide a formal framework that reconciles these findings. While there are barriers aplenty to fully

implementing anything resembling “rational” energy and climate policies, this understanding of

how policymakers use new information opens doors for further research on how the IPCC should

report the latest scientific consensus on climate sensitivity estimates and the way that this is likely

to impact on the future policy landscape for the energy industry.

(a) (b)

(c) (d)

Figure 1: a, The full probability density functions for the prior (pdf3) and posterior distributions (pdf4) of the
policymaker and the evidence in AR5 (pdf1). b, The right-hand tail of the PDFs for the prior and posterior
distributions of the policymaker and the evidence in AR5. c, The full PDFs for the prior (pdf3) and posterior
distributions (pdf5) of the policymaker and the evidence in AR6 (pdf2). d, The right-hand tail of the PDFs for the
prior and posterior distributions of the policymaker and the evidence in AR6.
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Appendices

Appendix A. Willingness to act and E[T 2]

In this Appendix A, we outline an earlier result (Freeman et al., 2015), which shows that the

willingness to pay to avoid all future climate damage is, under reasonable assumptions, monotonic

increasing in E[T 2].

Assumptions

Three assumptions are necessary.

1. There is a single variable, T , that can be used to empirically quantify the scale of the climate

change threat. Higher positive values of T correspond to worse outcomes and T = 0 represents

no damages. In the context of this paper, this is taken to be the equilibrium climate sensitivity

(ECS).

2. The value of T is currently unknown. In the absence of perfect foresight, the policymaker

makes decisions on the basis of their beliefs about T . The policymaker has a prior probability

density function (pdf) for T , and experts also present their evidence as a pdf on T through

IPCC WG1 reports. After hearing the evidence, the policymaker uses Bayes’ Theorem to

update their beliefs and forms a posterior distribution on T . They take a fully accuracy-

motivated approach to assimilating the evidence in the IPCC reports.

3. A standard economic model is used to determine the policymaker’s willingness to act to either

fully prevent future climate change damages or take no mitigative action.

The standard economic model

With no threat from climate change, per-capita real consumption at time t would be y∗t . How-

ever, the harm done by climate change reduces per-capita real consumption to yt = (1−D (T )) y∗t

for some damage function D (T ) ∈ [0, 1) that increases with T when T is positive, and where

D(T ) = 0 if and only if T = 0. This damage function captures all future costs to society (environ-

mental, health, mortality, etc.) in terms of the consumption numeraire. To deduce the willingness

to act, we assume that the policymaker has a time-separable logarithmic utility function of con-

sumption. This utility function is applied to global average real per-capita consumption levels:
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the policymaker evaluates benefits and losses to other countries and future generations as if they

affected their own community directly. It follows that expected utility will be the same whether

the policymaker incurs the cost p to fully prevent future climate change damages or not:

ln (y0 − p) + e−ρtE[ln(y∗t )] = ln (y0) + e−ρtE[ln((1−D (T )) y∗t )], (1)

where ρ is the rate of pure time preference and y0 current consumption. Simple rearrangement

then gives:

ln

(
y0 − p

y0

)
= e−ρtE [ln (1−D (T ))] . (2)

Assume ρ = 0 throughout as the directional change in willingness to act after receiving expert

testimony does not depend on this constant. The policymaker and the IPCC agree on the utility

function and the damage function and disagree only in their assessment of the likely realization of

T .

Let ψ (T ) = − ln (1−D (T )), which is monotonic increasing in T when T is positive. From

equation (2) with ρ = 0, p/y0 = 1 − exp (−E [ψ (T )]) and hence p/y0 is monotonic increasing in

E [ψ (T )]. There are three sets of expectations of ψ (T ) that it will be necessary to consider; the prior

expectation of the policymaker before hearing the scientific evidence, Ef [ψ(T )]; the expectation

of the experts, Efc

[ψ(T )]; and the expectation of the policymaker after hearing the evidence,

Eg [ψ(T )]. These reflect the prior, f (T ), scientific consensus, f c (T ), and posterior g (T ) probability

density functions that are assigned to T . It is well known that Eg [ψ(T )] > Ef [ψ(T )] for all

monotonic increasing ψ (T ) if and only if g (T ) first order stochastically dominates f (T ). By

contrast, if g (T ) does not first order stochastically dominate f (T ), then we cannot be sure that

Eg [ψ(T )] > Ef [ψ(T )], or, equivalently, that the willingness to act of the policymaker will increase

as a consequence of hearing the scientific evidence. The fact that Bayesian posteriors are more

precise than Bayesian priors means that this stochastic dominance condition will frequently not

hold and therefore there is ambiguity over whether the policymaker’s willingness to act will increase

as a consequence of hearing the expert testimony. This is the central feature that is examined in

this paper.

If f c(T ) first order stochastically dominates f (T ), then the experts will assign a higher willing-

ness to act to avoid future climate change damage for all monotonic increasing ψ (T ) than will the
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policymaker under their prior beliefs. But, while we will consider this condition below, it is often

overly restrictive. Therefore, we concentrate instead on what we define as the policymaker having

a“low prior”; Efc

[ψ(T )] > Ef [ψ(T )] for a given damage function D (T ). Equivalently, we can say

that the policymaker has a “low prior” if the willingness to act of the experts is greater than the

willingness to act of the policymaker under their prior beliefs for a given, specific, damage function

on which all parties agree.

From the definition of ψ (T ), we can write D (T ) = 1−exp (−ψ (T )). We will primarily consider

damage functions of the form ψ (T ) = θkT
k for θk > 0 and k > 1; results for an alternate form

of damage function are available upon request from the authors. These functions are increasing

and convex for all T > 0 and includes D (T ) = 1 − exp
(
−θT 2

)
with θ = θ2. This exponential

quadratic specification has previously been used widely to represent climate change damage and

therefore is particularly relevant for the problem at hand (Freeman et al., 2015; Pindyck, 2013,

2012; Weitzman, 2009). This damage function is used in the baseline calibrations in the body of

the paper, when ψ(T ) = θT 2 and p/y0 is monotonic increasing in E[T 2] for fixed θ.

Appendix B. Bayesian updating of beliefs

The main theoretical results are new and based on the model of Morris (1974), who proves that,

for some uncertain quantity, x, the relationship between (i) the prior distribution of the policymaker

(using our terminology), f (x|Ω), based on their prior information Ω; (ii) the distribution of the

experts, f c (x|Ωc) , based on full scientific information Ωc; and (iii) the posterior of the policymaker,

g(x|Ω, f c) after hearing the opinion of the experts, is given by:

g (x|Ω, f c) ∝ L (f c|x,Ω) f (x|Ω) , (3)

where L (f c|x,Ω) is the likelihood function associated with the experts’ information.

Unfortunately this model is “frustratingly difficult to apply”(Clemen and Winkler, 1999, p.190)

because of the problem with assessing the likelihood function. However, as shown originally by

Morris (1977), under five assumptions about the experts’ assessment, f c (x|Ωc), this problem can be

significantly simplified: (i) that f c (x|Ωc) is normally distributed; (ii) that f c (x|Ωc) is “invariant to

scale”: the precision of the experts’ forecast, parameterized through the variance of f c (x|Ωc), does

not, on its own, reveal information about the true value of x; (iii) that f c (x|Ωc) is “invariant to
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shift”: if x suddenly changes to x+∆, then the mean of f c (x|Ωc) would also adjust by ∆; (iv) that

the experts are perceived by the policymaker to be “accurate probability assessors” and so f c (x|Ωc)

does not require calibration as technically described in Morris (1977): the policymaker accepts the

experts’ own assessment of the properties of their forecast error; (v) the experts’ forecast error (the

difference between the realization of x and the mean of f c (x|Ω)) is independent of the prior error

of the policymaker. Under these assumptions, Morris (1977) proves that L (f c|x,Ω) ≡ f c (x|Ωc);

the likelihood function L (f c|x,Ω) is equal to the expert pdf and therefore directly observable from

communication about the scientific consensus. In this case, equation (3) becomes:

g (x|Ω, f c) ∝ f c(x|Ωc)f (x|Ω) . (4)

Under the Gaussian likelihood function, a normal distribution for the prior f (x|Ω) is conjugate,

implying that g (x|Ω, f c) is also normally distributed. This has led to the normal-normal model for

f c (x|Ωc) and f (x|Ω) being the standard in the literature (e.g., (Jacobs, 1995; Clemen and Winkler,

1985; Winkler, 1981)). In other cases it is necessary to undertake some form of transformation of

the underlying variable to convert it into a Gaussian distribution (Clemen and Winkler, 1999); this

procedure is followed here.

Within this setting, the IPCC reports might be viewed as a “composite expert”. In this case,

we can imagine that there are n ∈ {1, ...N} experts, each with professional assessment f cn (x|Ωc
n) ∼

N
(
ϕn,Σ

2
n

)
. Let Φ denote the vector Φ = {ϕ1, ..., ϕN} and Ψ be an N ×N matrix with elements

Ψij = ϱijΣiΣj , where ϱij is the correlation between the forecast errors of expert i and expert

j. Then (Winkler, 1981) shows that the composite expert has a normally distributed opinion

f c (x) ∼ N
(
ϕ,Σ2

)
where:

ϕ = e′Ψ−1Φ/e′Ψ−1e,

Σ2 = 1/e′Ψ−1e,
(5)

and e is an N−vector of ones.

Lognormal distributions

Assume that both the policymaker’s prior and the consensus belief as summarized by the experts

in the IPCC reports are lognormally distributed: f (ln(T )) ∼ N
(
µ, σ2

)
and f c (ln (T )) ∼ N

(
ϕ,Σ2

)
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respectively.7 It is further assumed that this expert opinion is perfectly and non-strategically

communicated to, and interpreted by, the policymaker. The policymaker’s prior belief is that

T has a mean value Ef [T ] = m and variance V arf [T ] = s2, where, given the assumption of

lognormality:

m = exp
(
µ+ 0.5σ2

)
, s2 =

(
exp

(
σ2
)
− 1
)
exp

(
2µ+ σ2

)
. (6)

Similarly the view of the experts is that T has a mean value Efc

[T ] = M and variance

V arf
c

[T ] = S2. The policymaker then creates a fully rational posterior probability density func-

tion for the logarithmic value of T , g (ln (T )), through the application of Bayes’ theorem. Following,

e.g., Clemen and Winkler (1985); Winkler (1981), g (ln (T )) ∼ N(µ′, σ′2) where:

µ′ =
µ/σ2 + ϕ/Σ2

1/σ2 + 1/Σ2
, σ′2 =

1

1/σ2 + 1/Σ2
. (7)

The posterior mean value of T, Eg[T ] = m′ and variance V arg[T ] = s′2 are related to µ′ and

σ′2 in a way that is analogous to equation (6). We now consider five separate conditions and the

relationship between them.

C1 That the expert testimony first order stochastic dominates the prior belief of the policymaker;

f c(T ) ≻FSD f(T ). This is equivalent to F c (τ) ≤ F (τ) for all τ , with the inequality being

strict for at least one τ, where F c (τ) and F (τ) denote the cumulative distribution functions

of the experts’ opinion and policymaker’s prior beliefs respectively. For any τ , the experts

assign a higher probability to T > τ than the policymaker under their prior beliefs. The

necessary and sufficient conditions for this under lognormality are ϕ − µ > 0 and σ − Σ = 0

(Levy, 1973).

C2 That the experts have a higher mean estimate of T than the policymaker under their prior;

M > m. This is equivalent to ϕ− µ > 0.5
(
σ2 − Σ2

)
. Note that C1 ⇒ C2 because, if σ = Σ

as required by C1, then C2 requires ϕ − µ > 0 which is identical to the other constraint

in C1. The sufficiency of C1 for C2 also follows as a consequence of the property of first

order stochastic dominance that f c(T ) ≻FSD f(T ) directly implies that Efc

[T ] > Ef [T ].

7We now drop explicit notational reference to the Ω-relevant information, although this remains implicit in the
discussion.
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However C2 ⇏ C1 both because C2 does not require σ = Σ and because the sign of σ2 − Σ2

is indeterminate.

C3 That the policymaker has a “low prior”. This requires Efc

[ψ (T )] > Ef [ψ (T )], or, equiva-

lently, Efc [
T k
]
> Ef

[
T k
]
. With T being lognormally distributed, which has well-documented

closed form solutions for its non-central moments, this is equivalent to exp
(
kϕ+ 0.5k2Σ2

)
> exp

(
kµ+ 0.5k2σ2

)
, or ϕ − µ > 0.5k

(
σ2 − Σ2

)
. Analogous to the previous argument,

C1 ⇒ C3 but C3 ⇏ C1. The sufficiency of C1 for C3 also follows from the properties of

first order stochastic dominance and the fact that T k is monotonic increasing, implying that

Efc

[ψ (T )] > Ef [ψ (T )] for all monotonic increasing ψ (T ). By contrast C2 ⇏ C3 and C3 ⇏

C2 because k > 1 yet the sign of σ2 − Σ2 is indeterminate.

C4 That the information being conveyed by the experts increases the mean estimate of the pol-

icymaker; m′ > m. This condition holds if and only if µ′ − µ > 0.5
(
σ2 − σ′2). Substitut-

ing for µ′, σ′2 from equation (7) and simplifying shows that this inequality is equivalent to

ϕ − µ > 0.5σ2. Note now that C1 ⇏ C4 as 0.5σ2 is positive and, as usual, C4 ⇏ C1. As

σ2 > σ2 − Σ2, C2 ⇏ C4 but C4 ⇒ C2. Similarly, C3 ⇏ C4 and C4 ⇏ C3 because k > 1.

C5 That, on reading an IPCC WG1 report, the policymaker increases their willingness to act

to prevent climate change. Analogously to C3, this will occur if and only if µ′ − µ >

0.5k
(
σ2 − σ′2). Substituting for µ′, σ′2 from equation (7) and simplifying shows that this

inequality is equivalent to ϕ− µ > 0.5kσ2. Now C1 ⇏ C5 as σ2 is positive and, again, C5 ⇏

C1. As σ2 > σ2 −Σ2, C2 and C3 ⇏ C5 but C5 ⇒ C2, while C5 ⇒ C3. Finally C4 ⇏ C5 but

C5 ⇒ C4 because k > 1.

The necessary and sufficient relationships between the five conditions is summarized in Table

1. No condition is necessary and sufficient for any of the others, meaning that these are all clearly

distinct. The inequalities for C4 and C5 are both of the form ϕ − µ > 0.5κσ2, with κ = 1 for

C4 and κ = k > 1 for C5. For C4, given the properties of lognormality, this is equivalent to the

observation that the median consensus estimate of T must be greater than the policymaker’s mean

prior estimate. The final inequality with k = 2 for C5, ϕ > µ+ σ2, is the one used in the Main.

The equivalent inequalities using the moments of T, with k = 2 for C3 and C5, are:
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C1 C2 C3 C4 C5

C1 ⇒ ⇒ ⇏ ⇏
C2 ⇏ ⇏ ⇏ ⇏
C3 ⇏ ⇏ ⇏ ⇏
C4 ⇏ ⇒ ⇏ ⇏
C5 ⇏ ⇒ ⇒ ⇒

Table 1: This table summarizes the necessary and sufficient relationships between the five conditions. The relationship
has the condition in the first column on the left-hand side, and the condition in the top row on the right-hand side.
The ⇏ in the last column of the first row below the midrule should therefore be read as “C1 ⇏ C5”.

C1 ϕ− µ > 0 and σ − Σ = 0 ⇐⇒ m < M and s = mS/M ,

C2 ϕ− µ > 0.5
(
σ2 − Σ2

)
⇐⇒ m < M ,

C3 (k = 2) ϕ− µ > σ2 − Σ2 ⇐⇒ m2 < M2 + S2 − s2,

C4 ϕ− µ > 0.5σ2 ⇐⇒ m2 < M4
(
M2 + S2

)−1
,

C5 (k = 2) ϕ− µ > σ2 ⇐⇒ m2 < M4
(
M2 + S2

)−1 − s2.

Proof. Rearranging equation (6) gives,

µ = ln

(
m2

√
m2 + s2

)
, σ2 = ln

(
m2 + s2

m2

)
, (8)

with analogous expressions for ϕ,Σ2 with m, s replaced by M,S. Therefore:

ϕ− µ = ln

(
M2

√
m2 + s2

m2
√
M2 + S2

)
, σ2 − Σ2 = ln

(
M2(m2 + s2)

m2(M2 + S2)

)
, (9)

and from this it is useful to note that

ϕ− µ− 1

2

(
σ2 − Σ2

)
= ln

(
M

m

)
. (10)

All results follow from this. For C1, σ − Σ = 0 if and only if (σ +Σ)(σ − Σ) = σ2 − Σ2 = 0. This,

in turn, requires from equation (9) that (M2(m2 + s2))/(m2(M2 + S2)) = 1, or equivalently that

M2s2 = m2S2 and therefore that s = mS/M . That M must be greater than m for ϕ − µ > 0

then follows immediately from equation (10). Equation (10) also leads immediately to the single

condition required for C2. For C3 note from equation (9) that:
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ϕ− µ− (σ2 − Σ2) = ln

(√
M2 + S2

m2 + s2

)
. (11)

For the left hand side to be positive, (M2+S2)/(m2+ s2) > 1, giving the condition for C3. For

C4 and C5, from equations (8) and (9):

ϕ− µ− 1

2
σ2 = ln

(
M2

m
√
M2 + S2

)
, ϕ− µ− σ2 = ln

(
M2

√
m2 + s2

√
M2 + S2

)
. (12)

In both cases, for the inequality on the left is positive if and only if the term in the logarithmic

function is greater than one. These give the results for C4 and C5. QED.

Additional robustness analysis for inequalities C1-C5 to the specific underlying assumptions

are available upon request from the authors. These include numerical results beyond the single

example in the Main, alternative damage functions, as well as different distributions than lognormal

for T (Gaussian and Gamma distributions).

The analysis is not extended to more general utility functions than the logarithmic. This

is because it then becomes necessary to also model economic growth and its correlation with T

(Freeman et al., 2015). In a survey of experts on intergenerational discounting (Drupp et al.,

2018), the median and modal recommended values of the elasticity of marginal utility for long-term

threats is one, supporting the use of logarithmic utility in this paper.
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