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A B S T R A C T

This paper introduces an approach for separately quantifying the contributions from renewables in decom-
position analysis. So far, decomposition analyses of the drivers of national CO2 emissions have typically con-
sidered the combined energy mix as an explanatory factor without an explicit consideration or separation of
renewables. As the cost of renewables continues to decrease, it becomes increasingly relevant to track their role
in CO2 emission trends. Index decomposition analysis, in particular, provides a simple approach for doing so
using publicly available data. We look to the U.S. as a case study, highlighting differences with the more detailed
but also more complex structural decomposition analysis. Between 2007 and 2013, U.S. CO2 emissions decreased
by around 10%—a decline not seen since the oil crisis of 1979. Prior analyses have identified the shale gas boom
and the economic recession as the main explanatory factors. However, by decomposing the fuel mix effect, we
conclude that renewables played an equally important role as natural gas in reducing CO2 emissions between
2007 and 2013: renewables decreased total emissions by 2.3–3.3%, roughly matching the 2.5–3.6% contribution
from the shift to natural gas, compared with 0.6–1.5% for nuclear energy.

1. Introduction

Over the period of 1990–2007, U.S. energy-related CO2 emissions
showed an increasing trend and were projected to continue increasing (EIA,
2007). In 2007, however, emissions instead took a sharp turn downwards
and by 2013, annual CO2 emissions had decreased by 10% (600 million
tonnes). Over the same period, renewable energy increased significantly.
Most of the expansion in renewables came from wind energy, which in-
creased from 0.36 exajoules (EJ) to 1.69 EJ (on a primary energy basis) over
the period. There was also an increase of roughly equal magnitude in
bioenergy consumption from 3.68 EJ to 4.93 EJ. The increase in solar en-
ergy was modest in absolute terms (from 0.069 EJ to 0.24 EJ), though
significant in relative terms, with more than a threefold increase in six years
(EIA, 2016). This increase in renewable energy was matched by a similarly
unprecedented decline in costs (Wagner et al., 2015). Observing such
trends, we want to be able to answer the question: what was the con-
tribution from renewables to U.S. CO2 emissions reductions?

Decomposition analysis provides a method for addressing that
question. As Wang et al.'s (2017) review shows, index decomposition

analysis (IDA) and structural decomposition analysis (SDA) are tech-
niques that have been extensively used by researchers to analyze dri-
vers of changes in energy-related emissions for energy and climate
policy assessment. IDA in particular has proven useful for tracking
improvements in economy-wide energy efficiency: as noted by Wang
et al. (2017), the activity intensity effect, which captures changes in
energy efficiency as part of the IDA, is used by energy agencies in nu-
merous countries, including the U.S., Canada, Australia, New Zealand,
and Europe (Belzer, 2014; OEE, 2013; Stanwix et al., 2015; Elliot et al.,
2016; ODYSSEE, 2015). Similarly, we here demonstrate how IDA can be
used to track the role of renewables in CO2 emission trends by sepa-
rately quantifying the impacts of renewables, nuclear energy, and
natural gas.

We complement our IDA with an SDA for the same period. By doing
so, we can compare differences between these two methods. We assess,
in particular, whether it is legitimate to use the much simpler IDA to
address the question of renewables’ contribution or whether the com-
plex SDA is needed. We find that IDA is adequate to address this
question.
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Furthermore, applying both IDA and SDA to the same case study
provides new insights on the drivers behind recent U.S. CO2 emission
reductions with potentially important implications for policy.
Specifically, it reveals problematic aspects with the data used in a re-
cent SDA by Feng et al. (2015), which lead to questionable conclusions.
Feng et al. (2015) quantified the contributions from the economic re-
cession and changes in the fuel mix and found, consistent with Nelson
et al. (2015), that the largest decrease in emissions over the period
2007–2013 was due to decreased consumption during the recession of
2007–2009, with changes in the fuel mix playing a comparatively
smaller role. However, by only focusing on changes in the total fuel
mix, Feng et al. (2015) could not separately quantify the impact of
renewables and natural gas. In a response to Feng et al. (2015), Kotchen
and Mansur (2016) also suggested that Feng et al. understated the
impact of natural gas and that the shale gas boom alone had reduced
total U.S. CO2 emission by 2.1–4.3% between 2007 and 2013. This
range for the contribution from natural gas, however, is wide, and
neither of these previous analyses specifically considered the impact of
renewables.1

By separately quantifying the impacts of renewables, nuclear en-
ergy, and natural gas, we find that changes in the composition of U.S.
energy supply contributed 6.3% (SDA) to 7.5% (IDA) of the total
emissions reduction of 10% between 2007 and 2013, out of which
natural gas contributed 2.5% (SDA) to 3.6% (IDA) and renewables 2.3%
(SDA) to 3.3% (IDA). These results are within the range for natural gas
suggested by previous analyses such as Kotchen and Mansur (2016) but,
unlike those prior analyses, also show that renewables have been as
important as natural gas in reducing U.S. CO2 emissions.

2. Using IDA and SDA to analyze the role of renewables in CO2
emission trends

As explained by Wang et al. (2017), results given by decomposition
analyses can help researchers and policy makers understand the driving
forces behind changes in energy use or emissions. The rationale of
decomposition analysis is to decompose the change in a variable of
interest, such as total CO2 emissions, into a sum of changes in each of a
number of key driver variables (such as total energy use, the share of
renewables, and the composition of fossil fuel energy use). The ap-
proach is based on defining an identity where the variable of interest
equals the product of all the driver variables. The different methods of
decomposition analysis offer different approaches on how to decom-
pose an overall change in this multiplication into a sum of changes in
each driver variable. Formally, this is achieved by taking the derivative
over time of the variable of interest and applying the product rule, thus
resulting in the sum of the derivatives over time of the driver variables.
The decomposition methods then offer different approaches on how to
go from infinitesimal changes (derivatives) to changes between time
periods such as years or longer periods, depending on data availability
(cf. Löfgren and Muller, 2010; Muller, 2007). The effects identified in
an IDA make it possible to draw conclusions regarding the impacts of
improved energy efficiency (activity intensity effect), adjusting
economy structure (structure effect) and decarbonizing energy mix
(energy mix effect). The energy mix however is commonly introduced
as one of the explanatory factors without an explicit consideration or
separation of renewables and nuclear energy, as with the analyses done
by Feng et al. (2015) and Steenhof and Weber (2011). However, with
the rise of renewables and their expected continued cost decreases, it
will become increasingly important to analyze the role of renewables in
CO2 emission trends. We here introduce an example for how to do so in
both IDA and SDA. In particular, we decompose the changes in the

energy mix into three components: changes in the energy supply from
renewables, nuclear energy, and changes in the fossil fuel mix. This
allows us to quantify what the rise of renewables and the recent sharp
decrease in their costs have meant for U.S. CO2 emissions, and also to
separately quantify the contribution from changes in the fossil fuel mix
triggered by the shale gas boom and lower natural gas prices.

We present results using both IDA and SDA and note just like Wang
et al. (2017) and Hoekstra and van den Bergh (2003) that IDA offers
insights on the impacts of energy composition, economic structure and
economic output, while SDA sheds light on the effects of production
technology and consumption patterns. The main advantage of SDA lies
in a detailed coverage of a number of technological and final demand
effects related to the sectoral structure and between-sector exchange as
captured in input-output tables. These aspects are however not relevant
for the identification of the role of renewables in IDA, as they do not
specifically affect different energy types (IEA, 2016a). The main reason
we also perform an SDA is to be able to compare our results to the SDA
performed by Feng et al. (2015) which highlights some methodological
pitfalls to consider when assessing the impacts of changes in the energy
mix using SDA.

3. Data and methods

We here present the data used and the formulas for separating the
renewables, nuclear and fossil fuels effects in IDA and SDA.

3.1. Data

In the IDA, we utilize energy statistics from the U.S. Energy
Information Administration's (EIA) Monthly Energy Review for the re-
sidential, commercial, industrial, transportation and power sectors on
CO2 emissions (Tables 12.2–12.6, respectively), on primary energy use
(Tables 2.2–2.6, respectively), and on net electricity generation from
the power sector (Table 7.2b) (EIA, 2015). We use the coal, natural gas,
petroleum, and renewable energy (for the transportation sector
equivalent to biomass energy) categories as defined by the EIA. Detailed
information about data definitions and sources can be found for the
primary energy data in EIA (2017a), for the CO2 emissions data in EIA
(2017b), for the power sector net generation data in EIA (2017c), and
for renewable energy data in EIA (2017d).

The SDA is instead based on energy accounts created to match with
an input-output table for national accounts. The basis for the Input-
Output tables are the Make and Use tables by the Bureau of Economic
Analysis (BEA) (2016a, 2016b). We adjusted the obtained Input-Output
tables from current prices to constant prices (base year 2009) using the
Chain-Type Price Indexes for Gross Output by Industry, developed by
the Bureau of Economic Analysis (BEA) (2016c). For the compilation of
energy use data, we followed the technical report on the compilation of
the World Input-Output Database (WIOD) environmental data by Genty
et al. (2012), whenever it was applicable. The authors of this report
demonstrate how to get from energy balances to energy accounts that
correspond to the national accounting framework based on the ex-
tended world energy balances provided by the International Energy
Agency (IEA) (2016b). Schneider (2016) provides a detailed explana-
tion of this data compilation process for the SDA. The corresponding
CO2 emissions data was taken from IEA (2016a).

Due to the different data used, there are differences in the total U.S.
CO2 emission estimates used for the IDA and the SDA. The reason is that
the energy statistics used for the IDA follow the territorial principle,
meaning that all energy use and emissions that take place in a certain
territory (e.g., a country) are accounted for, irrespective of the legal
status of the emitting unit as a resident or not. In contrast, the national
accounts used for the SDA follow the residence principle, i.e., all energy
use and emissions by a resident of the country are included, whether
they are taking place within or outside this territory (Genty et al.,
2012). Important differences between the national accounts and the

1 A previous version of this paper was shared with Feng et al. in September 2015. In
their reply to Kotchen and Mansur (2016), Feng et al. (2016) subsequently made brief
reference to the role of renewables.
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energy statistics stem from road, air and water transport by residents
abroad. Notably, the territorial principle in the IDA is consistent with
the rationale behind the greenhouse gas (GHG) emission inventories
submitted under the United Nation's Framework Convention on Climate
Change (UNFCCC), while the residence principle of the SDA is not.

3.2. Index decomposition analysis

The results from the IDA are based on the additive logarithmic mean
divisia index (LMDI) method recommended by Ang (2004) and de-
scribed in detail in Ang (2005). The IDA decomposes CO2 emissions
from the five sectors defined in the EIA energy data, i.e., the residential,
commercial, industrial, transportation and power sectors. CO2 emis-
sions from direct energy use in the residential, commercial, industrial
and transportation sectors were decomposed using primary energy
demand as an output proxy (cf. Löfgren and Muller, 2010). The power
sector CO2 emissions were instead decomposed using net electricity
generation as the output.

The factors contributing to CO2 emission changes considered for the
end-use sectors (residential, commercial, industrial and transportation)
are:

• Changes in primary energy demand.

• Changes in the shares of renewable and non-renewable energy in
primary energy use.

• Changes in the relative shares of natural gas, coal and petroleum in
fossil fuel use (i.e., fossil fuel switching).

• Changes in the emission intensity per unit of primary energy for
natural gas, coal and petroleum.

The IDA identity for direct CO2 emissions in the end-use sectors
which makes it possible to decompose the change in CO2 emissions
between two years into the above listed drivers as a primary energy
demand effect, a renewable energy effect, a fossil fuel substitution ef-
fect and an emission intensity effect, respectively, can be written:

=CO p r f e2 * * *ij i i ij ij (1)

where CO2ij is annual CO2 emissions in million tonnes (Mt) from fossil
fuel category j in sector i. For each sector i, pi stands for the primary
energy demand in British thermal units (Btu), ri for the non-renewables
share in total primary energy (i.e., the share of primary energy use not
provided by renewable energy which is how the impact of renewables is
operationalized in the calculations because renewable energy does not
give rise to CO2 emissions and therefore do not form an explicit part of
the identity), fij for the share of fossil fuel category j in total fossil fuel
primary energy and eij for the CO2 intensity in tonnes of CO2 per Btu of
fossil fuel category j. The fossil fuel categories are coal, natural gas, and
petroleum products. Note that mathematically, CO2 emissions from the
different fossil fuel categories are decomposed separately so that the
fossil fuel factor in the formulas represents the share of fossil fuel ca-
tegory j in total fossil fuel primary energy use in sector i, and that the
total fossil fuel substitution effect, just like the other effects, is calcu-
lated as the net sum over the three fossil fuel categories and the five
sectors in line with Eq. (3) below.

The factors contributing to CO2 emission changes considered for the
power sector are comparable to the factors for the end-use sectors, but are
based on net electricity generation instead of primary energy use, which
allows us to add nuclear energy and heat rate as two additional factors:

• Changes in electricity demand (as represented by total net electricity
generation).

• Changes in the share of renewable energy in net electricity gen-
eration.

• Changes in the share of nuclear energy in net electricity generation.

• Changes in the relative shares of natural gas, coal and petroleum in
total fossil fuel net generation (i.e., fossil fuel switching).

• Changes in the average heat rate for natural gas, coal and petroleum
based electricity generation, respectively, (i.e., changes in the
average efficiency of the power plant fleet).

• Changes in the emission intensity per unit of primary energy for
natural gas, coal and petroleum, respectively.

The IDA identity for the power sector which makes it possible to
decompose the change in CO2 emissions between two years into the
above listed drivers as an electricity demand effect, a renewable energy
effect, a nuclear energy effect, a fossil fuel substitution effect, a heat
rate effect and an emission intensity effect can in turn be rewritten

=CO s r n f c e2 * * * * * ,power j power power power power j power j power j, , , , (2)

where spower stands for total annual net electricity generation in mega-
watt hours (MWh), rpower for the non-renewables (i.e., the share of net
electricity generation not provided by renewables, that is fossil fuel plus
nuclear energy) share in total net generation, npower for the share of total
fossil fuel net generation in total non-renewables net generation, fpower,j
for the share of fossil fuel category j in total fossil fuel net generation,
cpower j, for the heat rate of fossil fuel category j in Btu per MWh and
epower j, for the CO2 intensity in tonnes of CO2 per Btu of fossil fuel ca-
tegory j. Using the same logic as for the end-use sectors, the renewable
energy factor is calculated by taking the remainder after the share of
renewable energy in total net generation has been subtracted since only
sources that give rise to CO2 emissions are explicitly featured in the
identity. Similarly and for the same reason, the impact of nuclear en-
ergy is operationalized by taking the remainder after the share of nu-
clear energy has been subtracted from non-renewable net generation.

The calculations of the effect associated with each factor in the
above identities are completely consistent with the general formulae
presented for additive LMDI in Ang (2005). Thus the total renewable
energy effect is given by:
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−
−

⎛
⎝

⎞
⎠

CO CO
CO CO

r
r

Renewable energy effect
2 2

ln 2 ln 2
ln

i j

ij ij

ij ij

i

i

2013 2007

2013 2007

2013

2007

(3)

To allow us to focus on the disaggregation of the fuel mix effect
when we present our IDA results in Fig. 1, we present the total primary
energy demand effect as the total sum of the electricity demand and
heat rate effects in the power sector, as well as the primary energy
demand effects in the four end-use sectors. Similarly, the fossil fuel
substitution effect is the sum of this effect across the sectors and in-
cludes the CO2 intensity effects, since this effect is in fact representing
intra-fossil fuel substitution (e.g., distillate fuel oil to residual fuel oil
within petroleum products), and is negligible compared to the size of
the fossil fuel substitution effect from switching between natural gas,
coal and petroleum.

3.3. Structural decomposition analysis

The structural decomposition analysis involves nine different mul-
tiplicative contributing factors, whose influences on the variations in
the CO2 emissions from year to year are analyzed, while the total of
direct household emissions HHdir is simply added to the otherwise
purely multiplicative equation (see e.g., Miller and Blair, 2009; Feng
et al., 2015). The nine factors considered in the SDA can be divided into
energy demand and energy supply side factors, respectively. The SDA
thus allows for a decomposition of the energy demand side factor not
possible in our IDA while the energy supply side factors in the SDA are
consistent with the factors considered in the IDA.
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Energy demand side factors

• Changes in population size.

• Changes in consumption volume (in real USD per capita).

• Changes in consumption patterns (relative output shares of different
industry sectors).

• Changes in the production structure (the input mix).

• Changes in the energy intensity of production.

Energy supply side factors

• Changes in the share of renewable energy in energy use.

• Changes in the share of nuclear energy in energy use.

• Changes in the relative shares of fossil fuel and waste in energy use
(fossil fuel switching).

• Changes in the emission intensity for the fossil fuel and waste ca-
tegories.

The SDA identity which makes it possible to decompose the change
in CO2 emissions between two years into the above listed drivers is:

= +EmI FFWa Nu Re EnI L yCO y p HH2 * * * * * * * * ,s v dir

where CO2 is a scalar and denotes the total annual CO2 emissions in Mt.
The first four factors represents the energy supply side and the re-
maining six the energy demand side. The emission intensity EmI is
represented by a 1×9 row vector, which comprises the CO2 emissions
in Mt per kilotonne of oil equivalent (ktoe) of energy use for the nine
different fossil fuel and waste energy sources used in the analysis. Fossil
fuels and waste FFWa is depicted by a 9×71 matrix, where for each of
the 71 columns representing the 71 industries used in the analysis the
share of each energy source (rows) in total energy use from fossil fuels
and waste is listed. Similar to the logic from the IDA explained above,
nuclear Nu is a 71×71 diagonal matrix, where the diagonal contains
the share of the energy use from fossil fuels and waste in the total non-
renewable energy use for each of the 71 industries. The renewables Re
are similarly represented by a 71×71 diagonal matrix where the di-
agonal comprises the share of the energy use from fossil fuels and waste
as well as nuclear energy in the total energy use (i.e., just like in the IDA
the remainder after the share of renewables in total energy use has been
subtracted). All three variables FFWa, Nu and Re do not only include
the energy sources themselves (primary energy products) but also the

electricity and heat (secondary energy products) that are produced
based on the energy sources within each variable. Since in economic
terms, each individual production step is represented with its full value
in the input-output tables (production structure L, see below) no matter
the intermediate products, each energy production step needs to be
counted individually as well to match the classification. This means that
the MJ in e.g., coal are counted in a first step as primary energy. Then,
in a second step, the MJ are counted again in the form of electricity as
secondary energy. Even though the energy contained in coal is con-
verted to electricity and therefore essentially the same energy in both
steps, it is counted twice to match the inherent double-counting of the
input-output tables. This inherent feature of the SDA is one reason, in
addition to the choice of allocation method discussed below, why the
SDA will yield somewhat different results to an IDA.

The energy intensity EnI is represented by a 71×71 diagonal
matrix, where the diagonal comprises the energy use in ktoe per total
commodity output in USD for each of the 71 industries. The production
structure L is depicted by the total requirements matrix, which entails
all interindustry transactions and takes the shape of a 71×71 matrix.
The consumption patterns ys are represented by a 71×1 column vector
that comprises the shares of total final demand in the 71 industries,
whereby the sum of the column vector equals 1. The consumption vo-
lume yv in real USD per capita and the population p are both scalars
denoting the sum of total final demand based on all final demand ca-
tegories and the US population size, respectively.

Similar to how we chose the additive LMDI for the IDA, the SDA re-
quires a choice of approach for how to allocate the contributions across the
factors in the above identity since there is no unique solution for the de-
composition. Dietzenbacher and Los (1998) advocate averaging all possible
first-order decompositions. This method was used by Feng et al. (2015) and
we similarly use it here. For further details, we refer to Schneider (2016).

When we present results from the SDA for the energy supply side factors
in Fig. 2, similar to the results from the IDA, we present the total primary
energy demand effect as the total sum across all sectors and all energy
demand side factors (which are instead disaggregated in Fig. 3) to be able to
focus on the fuel mix effects. Fig. 2 presents the sum across all the 71 sectors
for the renewables, nuclear and fossil fuel substitution effects. Consistent
with Fig. 1, the fossil fuel substitution effect also includes the energy in-
tensity effect, but again, since this intra fuel substitution effect is negligible,
the size of this factor is driven by a switch from coal and petroleum towards
natural gas.

Fig. 1. Index decomposition of the difference in U.S. energy-
related CO2 emissions between 2007 and 2013: energy
supply. The black bars show the annual emissions in 2007 and
2013, respectively. The blue bar shows the contribution from
primary energy demand to the difference in emissions between
2007 and 2013; the green bar the contribution from renewable
energy; the orange bar the contribution from nuclear energy; and
the grey bar the contribution from cross-fossil fuels substitution
(on net natural gas substituting for coal and petroleum products).
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4. Results and discussion

4.1. The impact of renewables on U.S. CO2 emissions between 2007 and
2013

We first present results from the IDA. With the IDA, we calculate a
disaggregated energy mix effect and separate out the effect of changes
in renewable and nuclear energy use from the fossil fuel substitution
effect. The remaining CO2 emission changes net of the energy mix
impact are due to changes in primary energy demand. Fig. 1 presents
the results. The total CO2 emission decrease between 2007 and 2013
was 639 Mt, down by 10.7% from 5989Mt in 2007 (EIA, 2015). Ac-
cording to the IDA, two-thirds of this total decrease in CO2 emissions
were due to changes in the energy mix, with 199Mt (3.3%) from re-
newables substituting for fossil fuels and 215Mt (3.6%) from changes
in the fossil fuel mix itself. 35Mt (0.6%) are attributed to increases in
nuclear generation and the remaining 190Mt (3.2%) to changes in
primary energy demand. The fossil fuel mix effect is primarily driven by
natural gas substituting for petroleum and coal; the renewables effect is

primarily driven by increases in intermittent renewable generation in
the power sector, but also by increased use of biofuels in the trans-
portation sector.

Next, we present the SDA results. Fig. 2 illustrates the results from
the structural decomposition analysis on the energy mix impacts. With
the residence principle used for the SDA as described in the methods
section, the total CO2 emission decrease between 2007 and 2013 was
instead 589 Mt, down by 10.3% from 5718 Mt in 2007. According to
the SDA, 353Mt CO2 or 6.2% came from changes in the composition of
energy supply, i.e., 60% of the total change in CO2 emissions was driven
by changes in the U.S. energy mix. Out of this total, 132Mt CO2 or 2.3%
came from an increase in the energy supply from renewables, while
83Mt (1.5%) came from an increase in nuclear electricity generation
and 138Mt (2.4%) came from changes in the fossil fuel mix, i.e., from
natural gas substituting for coal and petroleum products. The blue bar
shows the aggregate impact from the different drivers of primary en-
ergy demand, to be discussed in the next section, which was in total a
net reduction of 236Mt CO2.

Due to the aforementioned differences in the energy statistics data

Fig. 2. Structural decomposition of the difference in U.S.
energy-related CO2 emissions between 2007 and 2013: en-
ergy supply. The black bars show the annual emissions in 2007
and 2013, respectively. The blue bar shows the contribution from
primary energy demand to the difference in emissions between
2007 and 2013; the green bar the contribution from renewable
energy; the orange bar the contribution from nuclear energy; and
the grey bar the contribution from cross-fossil fuels substitution
(on net natural gas substituting for coal and petroleum products).

Fig. 3. Structural decomposition of the difference in U.S.
energy-related CO2 emissions between 2007 and 2013: en-
ergy demand. The black bars show the annual emissions in 2007
and 2013, respectively. The second bar shows the contribution
from changes in the fuel mix consistent with Fig. 2: green is for
renewable energy; orange for nuclear energy; and grey for cross-
fossil fuels substitution (on net natural gas substituting for coal
and petroleum products). The other bars decomposes the change
in primary energy demand into five effects: purple is changes in
energy intensity of production, dark blue is changes in the com-
position of the production sector, green is changes in the com-
position of consumption, red is changes in consumption volumes,
and yellow is changes in the size of the U.S. population.
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compared to national accounts, the results from the IDA and SDA are
not directly comparable. However, both methods speak to the role of
renewables in explaining the magnitude of the U.S. CO2 emissions de-
crease, no matter whether these emissions are defined according to the
territorial principle or the residence principle. Both analyses lead to the
conclusion that renewables were as important as natural gas in driving
down U.S. CO2 emissions between 2007 and 2013. We emphasize that
the data used in the IDA is more consistent with national GHG emis-
sions reporting and the definition of national emissions used under the
Kyoto Protocol and the subsequent Paris agreement. An IDA therefore
provides more informative results on the drivers behind changes in
official national emission figures than an SDA, while at the same time
requiring less data and being more straightforward to perform.

4.2. The impacts of production technology and consumption patterns on
U.S. CO2 emissions between 2007 and 2013

The benefit offered by the much higher data requirements for the
SDA is that it makes it possible to further explain the changes in pri-
mary energy demand, and how changes on the energy demand side of
the U.S. economy contributed to the CO2 emission decline between
2007 and 2013. The drivers of primary energy demand included in the
SDA are: changes in the energy intensity of the production sector,
changes in the structure of the U.S. production sector, changes in
consumption patterns, changes in consumption volume and lastly
changes in the size of the U.S. population.

Fig. 3 disaggregates the drivers of the changes in primary energy
demand. According to the SDA results, the most important factor was
changes in the mix of production inputs, which contributed to reduc-
tions of 271Mt, or 4.7% compared to CO2 emissions in 2007. Reduc-
tions in the amount of spending, i.e. consumption volume, contributed
an additional 141Mt of CO2 reductions or 2.5%–primarily driven by the
recession in 2008–2009. Changes in the type of goods and services that
Americans consumed reduced CO2 emissions by an additional 59Mt or
1%. Counteracting these reductions were a slight increase in the energy
intensity of production, which increased emissions by 29Mt or 0.5%.
Population growth also increased energy demand and thereby CO2

emissions by an additional 213Mt or 3.7%.
Therefore, the most important drivers for CO2 emission reductions

on the energy demand side were a shift towards a less energy-intensive
production structure and a reduction in consumption volume primarily
related to the recession in 2008–2009.

5. Methodological pitfalls in structural decomposition analysis

Both IDA and SDA are methodologically straightforward, but some
challenges can arise related to data availability and data preparation
(see Löfgren and Muller, 2010). We use our results to point out a par-
ticular challenge that may arise from the different structure of the
available data sources when preforming an energy-related SDA. We
illustrate this by comparing our results with an earlier SDA study that
addresses U.S. CO2 emissions over the same period done by Feng et al.
(2015). Overall, our estimated contributions from the combined fuel
mix changes from renewables, natural gas and nuclear are significantly
larger than the total fuel mix impacts estimated by Feng et al. (2015) –
6.3% versus their estimate of 4.4%. There are two explanations for this,
which highlight the need for very careful consideration and adjust-
ments of the underlying data when performing an SDA. The first is
related to how renewables are accounted for. In an SDA, where inputs
are based on primary energy input, electricity generation from renew-
ables need to be adjusted from a secondary energy to primary energy
basis to put them on par with fossil fuels. For example, 1MJ of coal
used for electricity is not comparable to 1MJ of electricity generated by
a wind turbine because of the conversion losses at the coal plant. One
way of addressing this bias is to adjust the renewable electricity

numbers by the average conversion efficiency of fossil fuel plants. This
method is used by EIA (see EIA, 2017d) and is the approach that we
have taken. If this adjustment is not done, the contribution from re-
newables will be underestimated.

Secondly, Feng et al. (2015) have combined two different sets of
data – the World Input-Output Database (WIOD) and the EIA energy
and emissions data. One of the two data sets uses the territorial prin-
ciple (EIA data) whereas the other data set uses the residence principle
(WIOD data). Combining the two data sets bears a very high risk of
leading to distorted results and conclusions since the underlying data-
sets are inconsistent. For example, the economic data (WIOD, re-
sidence) includes all American plane carriers (national and interna-
tional), while the emission and energy data (EIA, territorial) only
includes national airplane carriers or national air traffic.

This discussion illustrates the crucial importance of careful and
consistent data adjustments for the SDA to make sure that the energy
and emissions data correctly correspond to the sectoral definitions in
the input-output table. These complications do not arise for an IDA
where the only requirements for the calculations are energy statistics
and CO2 emissions data that follow the same sectoral divisions.

6. Conclusion and policy implications

The role of the switch from coal to natural gas in reducing U.S.
emissions from their 2007 peak has been well documented (see Afsah
and Salcito, 2013; Gold, 2013; IEA, 2012; Hanger, 2012; Kotchen and
Mansur, 2016; Melillo, 2014). In part, that is due to the novelty of the
factor, and the attention around the so called shale gas boom. In part, it
is because of available data: the role of fossil fuels in U.S. CO2 emissions
accounting is well understood—not so for renewables. Historically, they
have not been analyzed explicitly because they played a small role in
the overall energy mix. That is no longer the case. Our decomposition
analyses show an example of how to assess the contribution from re-
newables to CO2 emissions reductions, using the case of the U.S emis-
sion decrease between 2007 and 2013. Our results show that renew-
ables contributed somewhere between a fourth and a third of the
roughly 10% reduction in U.S. energy-related CO2 emissions over this
period. This is at the same level as the impact from changes in energy
demand and from natural gas.

These results do not diminish the role of the coal-to-natural gas
switch. However, it is important to keep in mind the role of methane
leakage along the natural gas supply chain, which significantly reduces
the net climate benefits of natural gas and the magnitude of which has
previously been underestimated (Alvarez et al., 2012; Allen et al., 2013;
Mitchell et al., 2015). Similarly, it is also worth noting that the net GHG
benefit of biofuels depends on factors such as the type of feedstock,
nitrogen fertilizer use as well as potential indirect land use impacts (see
e.g., Bureau et al., 2010; Huang et al., 2013; Mosnier et al., 2013;
Searchinger et al., 2008).

Structural shifts in the U.S. economy also contributed to the 10%
decrease in the country's CO2 emissions. Specifically, the U.S. produc-
tion sector shifted towards less energy intensive inputs and the down-
turn in consumption related to the recession also contributed to redu-
cing energy demand and CO2 emissions.

As the cost of renewables continues to decrease in the future and we
see further renewable capacity expansion in the electricity sector, it will
be increasingly relevant for researchers and policy makers to track their
role in CO2 emissions trends. Our analysis provides an example and
approach for how to do so using readily available data. All else equal,
such tracking may point to the need to further support renewables
deployment in service of energy sector emissions reductions, and like
this analysis - highlighting the overemphasis on the role of natural gas
in past analyses –, serve to nuance policy makers’ views of the under-
lying drivers of CO2 emissions.
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