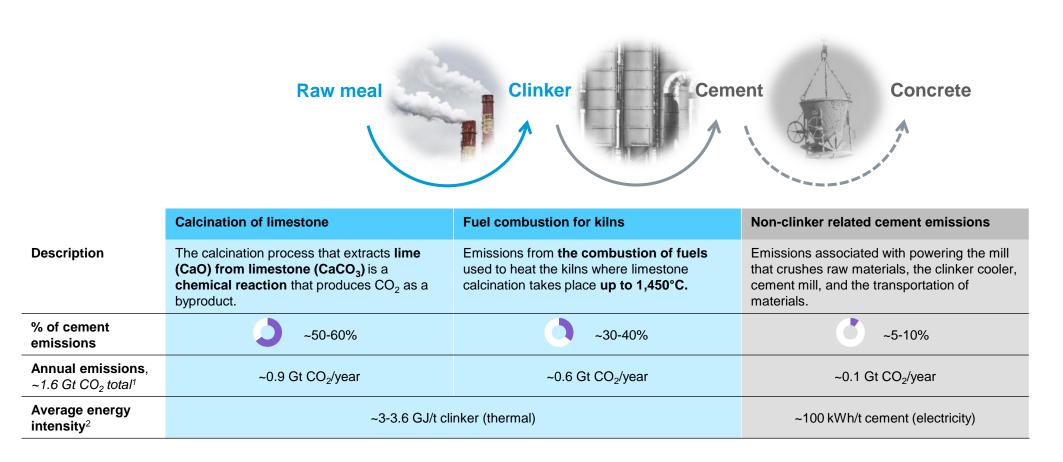
Economics of Decarbonizing Cement

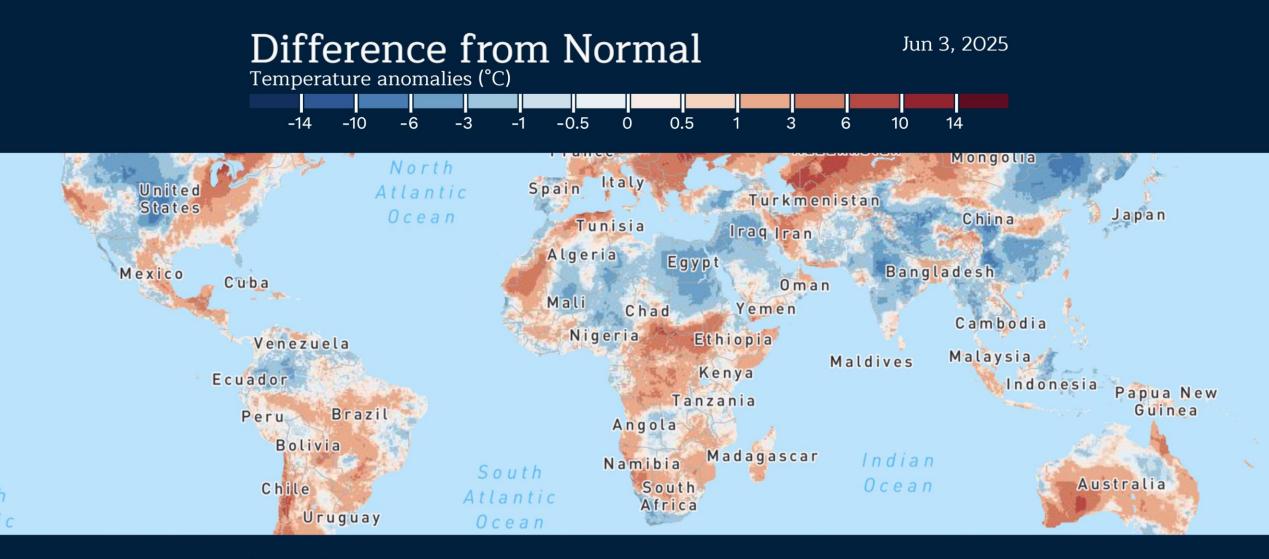


gwagner@columbia.edu gwagner.com

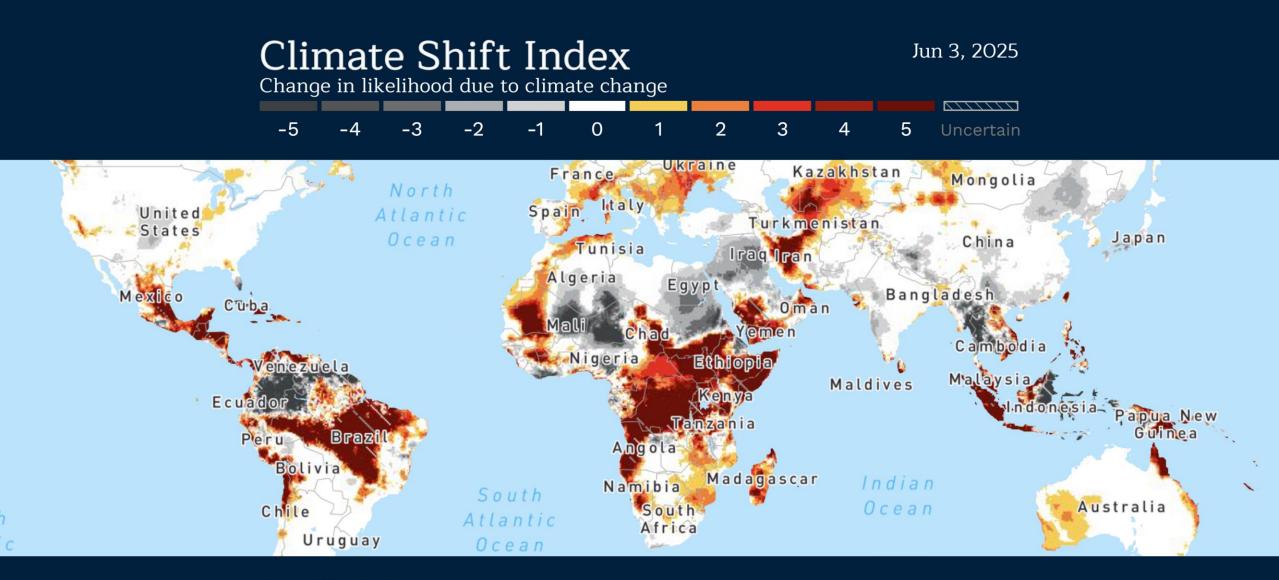
Clinker production accounts for ~90% of cement emissions

Cement production process

¹ Scope includes cement manufacturing only; full concrete value chain emissions total ~2.5 Gt CO₂ annually. ² Assumes dry kilns, which have widely replaced wet kiln processing globally. Sources: IEA, <u>Cement Tracking</u> (2023); CATF, <u>Recasting the Future</u> (2025); ACM, <u>Roadmap to Carbon Neutrality</u> (2021); CEMBUREAU, <u>Key Fact & Figures</u> (2024); DoE, <u>Liftoff Report</u> (2023). Credit: Jessica Cong, Isabel Hoyos, Hyae Ryung Kim, and <u>Gernot Wagner</u>. <u>Share with attribution</u>: Kim *et al.*, "<u>Decarbonizing Cement</u>" (2 June 2025).



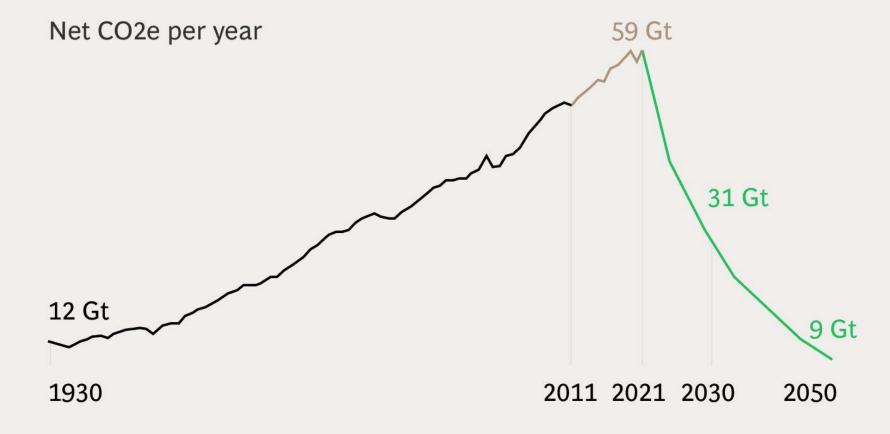
Blatten, Switzerland, 28 May 2025


Flin Flon, Manitoba (<u>NPR</u>, 30 May 2025)

Anomalies for average temperatures. Based on NOAA GFS forecasts through 2025-06-02T18Z. Anomalies are from 1991-2020 normal.

CLIMATE CO CENTRAL

Source: <u>climatecentral.org/climate-shift-index</u>


Climate Shift Index for average temperatures. Based on NOAA GFS forecasts through 2025-06-02T18Z.

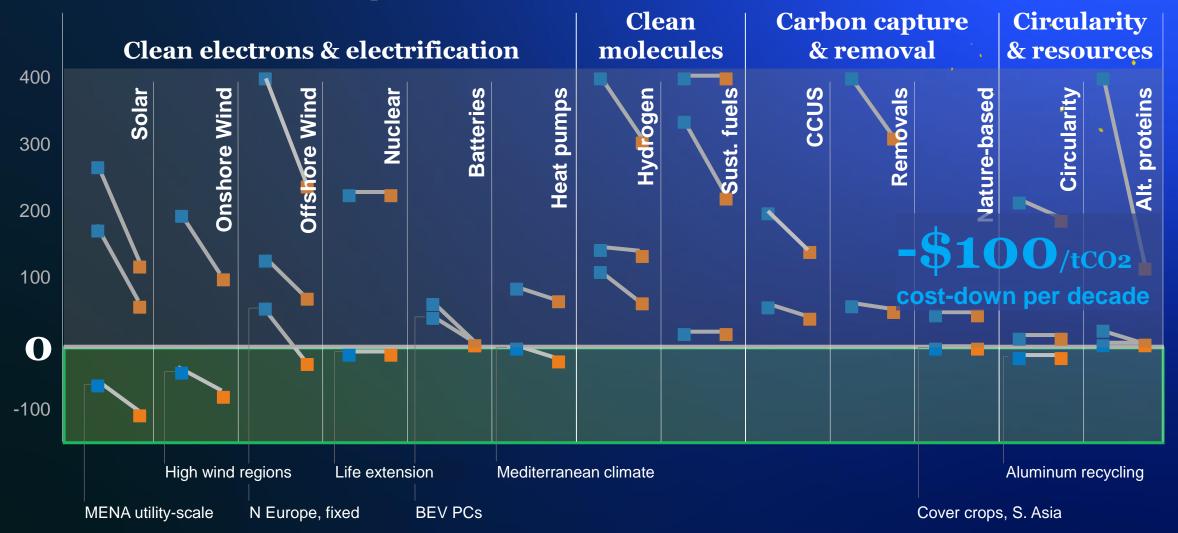
CLIMATE CO CENTRAL

Source: <u>climatecentral.org/climate-shift-index</u>

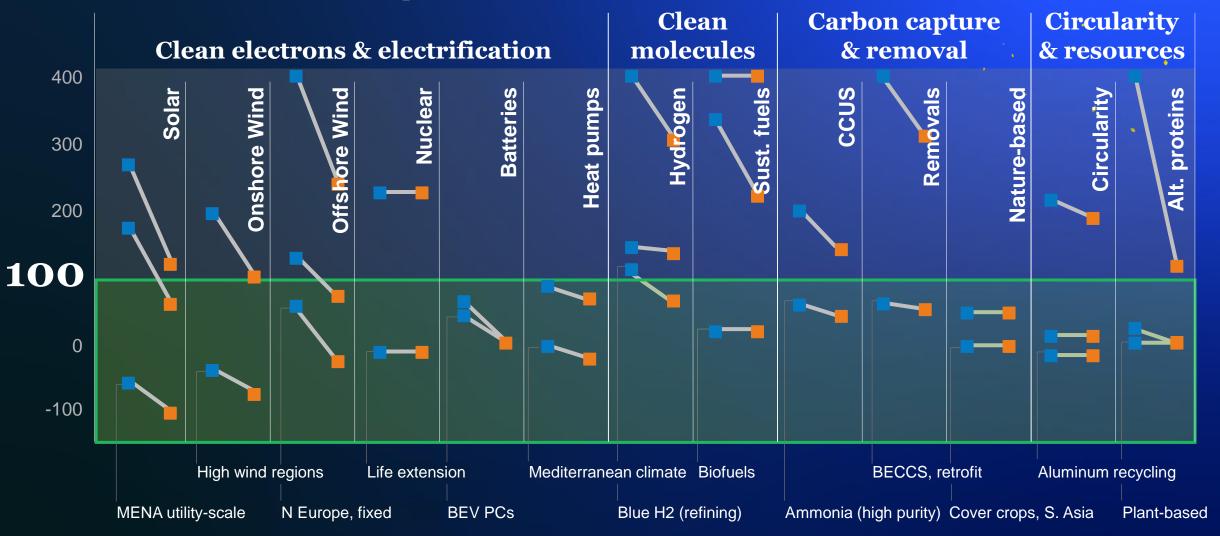
Major course correction needed to achieve the 1.5°C ambition

-7%

annual reduction in emissions needed by 2030 to meet the 1.5°C pathway


recent annual increase in emissions from 2011-2021

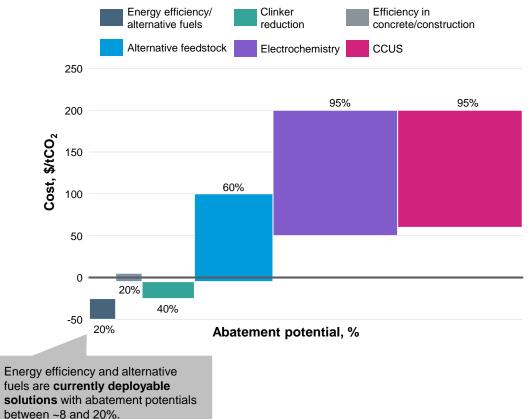
Bernd Heid, Senior Partner, McKinsey, at Columbia Business School, 18 November 2024


10 % of techs in the money today – steep cost-down to 2030

Estimated abatement costs, USD/tCO₂e

100\$/tCO₂ carbon tax would make most techs competitive

Estimated abatement costs, USD/tCO₂e



Clinker reduction can abate up to $\sim 40\%$ cement emissions; emerging technologies have higher abatement potential and cost

Key pathways for cement decarbonization

	Clinker reduction (SCMs and LC3)	Alternative feedstock	Electrochemistry	CCUS
Abatement potential ¹	15-40%	Up to 60%	Up to 95%	Up to 95%
Cost , \$/t CO ₂	-5 to -25	~-5 to ~100	(high)	~60 to 200
Technology readiness	High	Low	Low	Medium
Pathway to commercial scale	Rapid scale-up driven by large buyer demand and accelerated validation of blended cements.	Enabled by cost reductions and coordinated procurement to create investment signal.	Enabled by cost reductions and coordinated procurement to create investment signal.	Enabled by tax credits, policy support, and cost reductions as deployments ramp.
Key Players	Eco Material Technologies transforms fly ash into highly reactive pozzolans, creating SCMs that can substitute higher quantities of clinker.	Brimstone produces OPC and SCMs using non-carbonate calcium silicate rock, eliminating process emissions from limestone calcination.	Sublime Systems uses electrochemistry and non-carbonate feedstocks to produce calcium silicate cement, avoiding CO ₂ from limestone and fuel combustion.	Fortera developed a bolt-on technology that captures CO ₂ from cement production and mineralizes it into cementitious material.
	ECOMATERIAL TECHNOLOGIES	O BRIMSTONE	Sublime Systems	F fortera

Abatement cost vs. potential for key pathways²

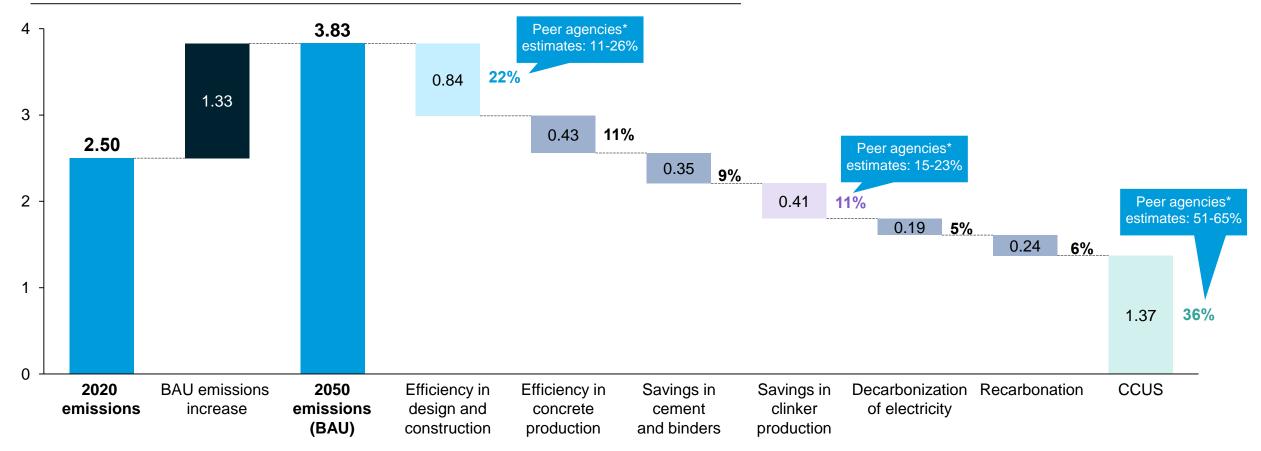
¹Unconstrained theoretical abatement potential for a given tonne of cement produced for each approach in isolation. ² Upper bounds of abatement potentials used. Source: DoE, Liftoff Report (2023); Mission Possible, Net-Zero Concrete and Cement (2023); CATF, Recasting the Future (2025) ACM, Roadmap to Carbon Neutrality (2021); GCCA, Concrete Future (2022); Climateworks Foundation, Low-carbon cement (2023).

Credit: Adele Teh, Hoshi Ogawa, Sho Tatsuno, Isabel Hoyos, Jessica Cong, Shailesh Mishra, Hyae Ryung Kim, and Gernot Wagner. Share with attribution: Kim et al., "Decarbonizing Cement" (2 June 2025).

Columbia Business School

11 of 18

1 Not if, when



Wagner, "Who pays for cutting carbon out of making cement?" (Financial Times, 19 May 2025)

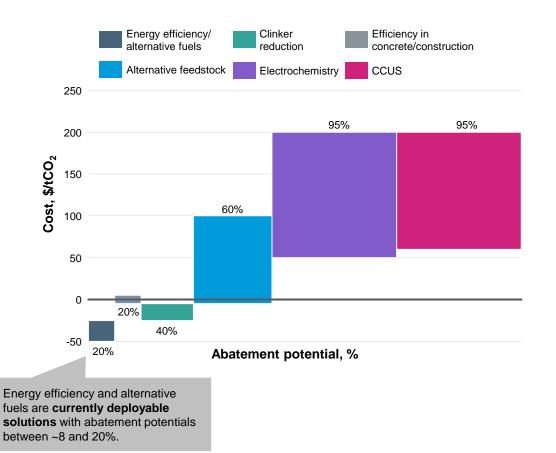
GCCA's Net Zero Roadmap presents CCUS and improved material efficiency as the key levers for decarbonizing the concrete sector

GCCA decarbonization roadmap, 2020-50, Gt CO_2

1 Not if, when

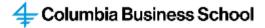
2 Innovator's Dilemma

Wagner, "Who pays for cutting carbon out of making cement?" (Financial Times, 19 May 2025)



Clinker reduction can abate up to ~40% cement emissions; emerging technologies have higher abatement potential and cost

Key pathways for cement decarbonization


	Clinker reduction (SCMs and LC3)	Alternative feedstock	Electrochemistry	CCUS
Abatement potential ¹	15-40%	Up to 60%	Up to 95%	Up to 95%
Cost , \$/t CO ₂	-5 to -25	~-5 to ~100	(high)	~60 to 200
Technology readiness	High	Low	Low	Medium
Pathway to commercial scale	Rapid scale-up driven by large buyer demand and accelerated validation of blended cements.	Enabled by cost reductions and coordinated procurement to create investment signal.	Enabled by cost reductions and coordinated procurement to create investment signal.	Enabled by tax credits, policy support, and cost reductions as deployments ramp.
Key Players	Eco Material Technologies transforms fly ash into highly reactive pozzolans, creating SCMs that can substitute higher quantities of clinker.	Brimstone produces OPC and SCMs using non-carbonate calcium silicate rock, eliminating process emissions from limestone calcination.	Sublime Systems uses electrochemistry and non-carbonate feedstocks to produce calcium silicate cement, avoiding CO_2 from limestone and fuel combustion.	Fortera developed a bolt-on technology that captures CO ₂ from cement production and mineralizes it into cementitious material.
	ECOMATERIAL TECHNOLOGIES	O BRIMSTONE	Sublime Systems	F fortera

Abatement cost vs. potential for key pathways²

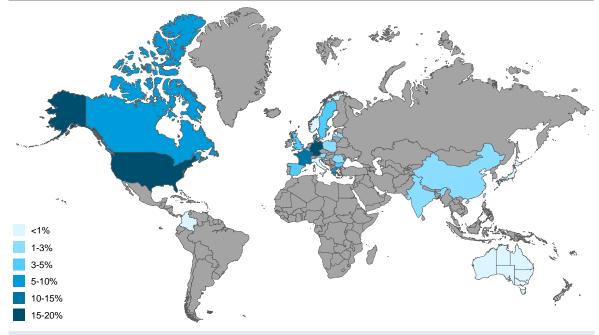
¹Unconstrained theoretical abatement potential for a given tonne of cement produced for each approach in isolation. ² Upper bounds of abatement potentials used. Source: DoE, Liftoff Report (2023); Mission Possible, <u>Net-Zero Concrete and Cement (2023); CATF, Recasting the Future</u> (2025) ACM, <u>Roadmap to Carbon Neutrality</u> (2021); GCCA, <u>Concrete Future</u> (2022); Climateworks Foundation, <u>Low-carbon cement</u> (2023).

Credit: Adele Teh, Hoshi Ogawa, Sho Tatsuno, Isabel Hoyos, Jessica Cong, Shailesh Mishra, Hyae Ryung Kim, and Gernot Wagner. Share with attribution: Kim et al., "Decarbonizing Cement" (2 June 2025).

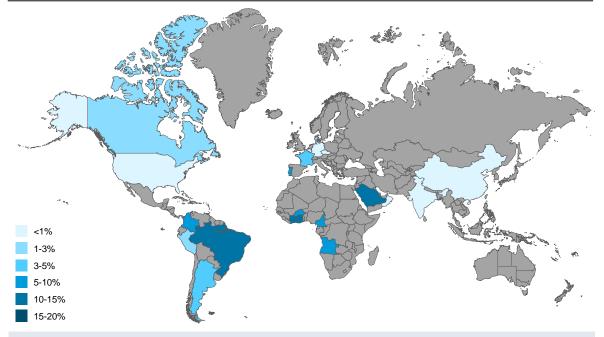
1 Not if, when

2 Innovator's Dilemma

3 Who pays?


Wagner, "Who pays for cutting carbon out of making cement?" (Financial Times, 19 May 2025)

Investment capacity and infrastructure drive CCUS in Global North; clay reserves and capital constraints drive LC3 in Global South

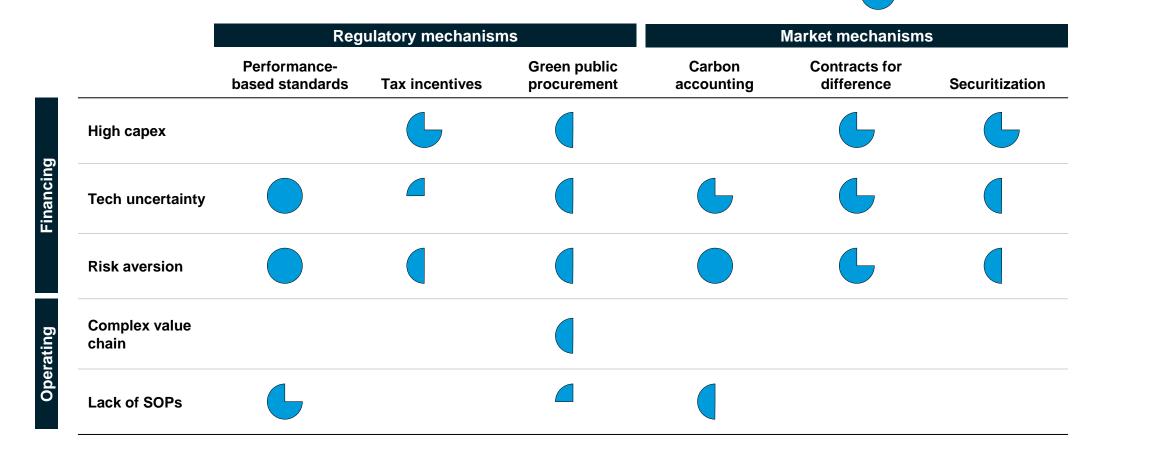

Cement CCUS capacity*, global distribution (Dec 2024)

Observations

- North America and the EU account for 92% of stated capacity from announced cement CCUS projects.
- **High capital needs and strong policy support** (e.g. U.S. 45Q tax credit) drive CCUS deployment in high-income countries.
- Existing oil & gas infrastructure in developed markets (e.g. pipelines, storage facilities, geological data) enable faster roll out. For example, Norway's Northern Lights project utilizes existing North Sea oil infrastructure to store CO₂.

Clay calciner capacity*, global distribution (Dec 2024)

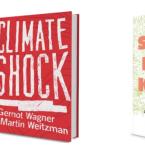
Observations


- Africa accounts for 44% of stated capacity from announced clay calciner projects.
- Clay calcination kilns are **less capital-intensive** and easily integrated into existing cement plants than CCUS installations, making them more attractive option for countries with limited industrial investment capacity.
- Many developing countries have **abundant clay reserves** but rely on imported clinker due to scarce high-grade limestone. Clay-based alternatives offer a **cost-effective solution** to meet rising cement demand amid rapid urbanization in developing countries.

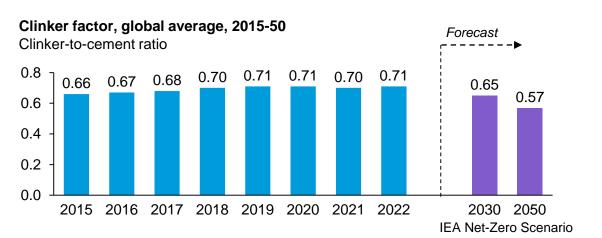
*Expected at full operation based on stated disclosed carbon capture capacity for CCUS and stated disclosed installed capacity for clay calciner Source: GCCA and LeadIT, <u>Green Cement Technology Tracker</u> (2024). Credit: Adele Teh, Isabel Hoyos, Hyae Ryung Kim, and Gernot Wagner. Share with attribution: Kim *et al.*, "Decarbonizing Cement" (2 June 2025).

Performance-based standards, public support, and market mechanisms key to overcoming barriers to decarbonization

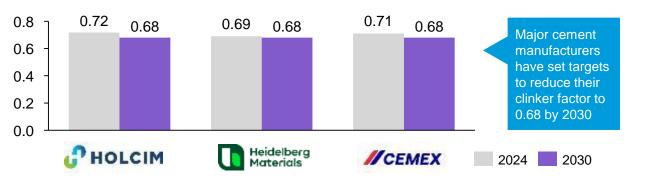
Barriers and solution mechanisms for cement decarbonization


Source: DOE, Liftoff Report (2023); WRI, Insights (2025) Green Cement Technology Tracker (2024); Columbia Center for Sustainable Investment, Green Public Procurement (2024); Climate Bonds Initiative, Securitization (2023). Credit: Adele Teh, Isabel Hoyos, Hyae Ryung Kim, and Gernot Wagner. Share with attribution: Kim *et al.*, "Decarbonizing Cement" (2 June 2025).

Effectiveness of solution mechanisms



Gernot Wagner gwagner@columbia.edu


gwagner.com

Partially substituting clinker can reduce up to ~30% of emissions with minor changes to the production process or added costs

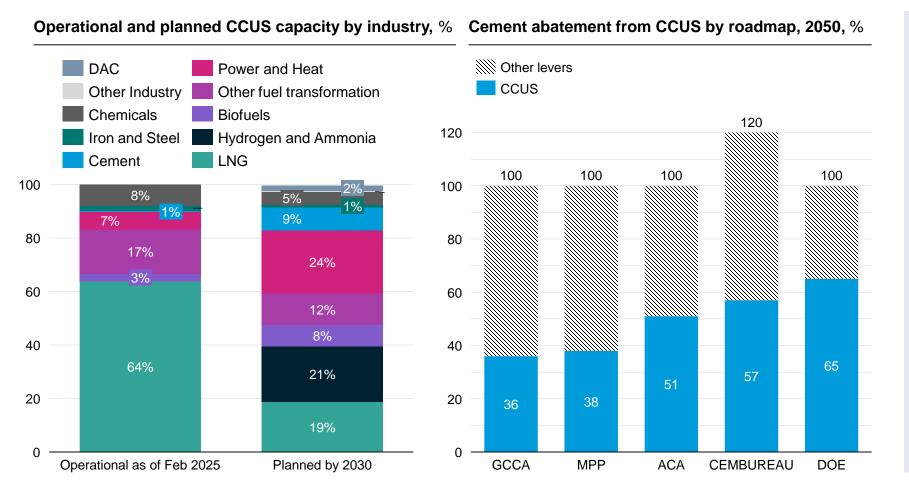
Clinker substitution technologies

Clinker factor targets, by company, 2023-30 Clinker-to-cement ratio

Observations

- Blended cements partially substitute clinker with supplementary cementitious materials (SCMs), including fly ash, blast furnace slag, silica fume, and pozzolans.
- Availability of industrial byproducts will decline as these industries decarbonize.
- Limestone Calcined Clay Cement (LC3) is a leading blended cement with clinker ratio of 0.5 that combines limestone, calcined clay, and gypsum. Compared to OPC, it has:
 - 40% less CO₂ emissions
 - 25% lower overall costs
- Clinker-to-cement ratios vary considerably by region due to the material availability and local regulations.
 - China: ~0.65
 - Europe: ~0.77
 - Canada: ~0.86
 - US: ~0.89

*In some countries, SCM substitution occurs during concrete manufacturing rather than cement manufacturing.


Sources: IEA, Cement (2023); Congressional Research Service, Cement (2023); Heidelberg, 2024 Annual Report (2025); Cemex, 2024 Annual Report (2024); Holcim, 2024 Annual Report (2024); IEA Net Zero by 2050 (2021); RMI, Unleashing the Potential of LC3 (2023).

Credit: Adele Teh, Hoshi Ogawa, Sho Tatsuno, Isabel Hoyos, Jessica Cong, Shailesh Mishra, Hyae Ryung Kim, and Gernot Wagner. Share with attribution: Kim et al., "Decarbonizing Cement" (2 June 2025).

CCUS

Carbon capture, utilization, and storage (CCUS) expected to play critical role in reducing hard-to-abate emissions in cement industry

Observations

- The majority of current CCUS operations target point-source emissions from oil & gas. However, as the energy industry continues to phase out fossil fuels, CCUS will play a bigger role in decarbonizing hard-toabate industries like cement and steel.
- As of Q1 2025, global CO₂ capture and storage capacity in operation reached over 50 Mt. By 2030, capture capacity is expected to reach 430 Mt based on current project pipeline, while storage capacity 670 Mt.
- Current cement CCUS plants:
 - Brevik CCS, Norway (Heidelberg): First industrial-scale CCS cement plant.
 Designed to capture up to 400k tonnes CO₂ annually. As of May 2025, the plant captured and stored first 1k tonnes of CO₂.
 - Lengfurt Cap2U, Germany (Heidelberg & Linde): First industrial-scale CCU cement plant. Designed to capture up to 70k tonnes CO₂ annually.

Sources: IEA, Net Zero by 2050 (2021); IEA, CCUS Projects Explorer (2025); IEA, Demand and Supply Measures for the Steel and Cement Transition (2025); International Cement, Review (2024); Cement, China Starts CCUS Focus (2023); Heidelberg, Brevik CCS (2025), GCCA, Concrete Future (2021); MPP, Making Net-Zero concrete and Cement Possible (2023); PCA, Roadmap to Carbon Neutrality (2024); DoE Industrial Decarbonization Roadmap (2022); CEMBUREAU, From Ambition to Deployment (2024).

Credit: Adele Teh, Hoshi Ogawa, Sho Tatsuno, Isabel Hoyos, Jessica Cong, Shailesh Mishra, Hyae Ryung Kim, and Gernot Wagner. Share with attribution: Kim et al., "Decarbonizing Cement" (2 June 2025).

Demand-side levers key for material efficiency

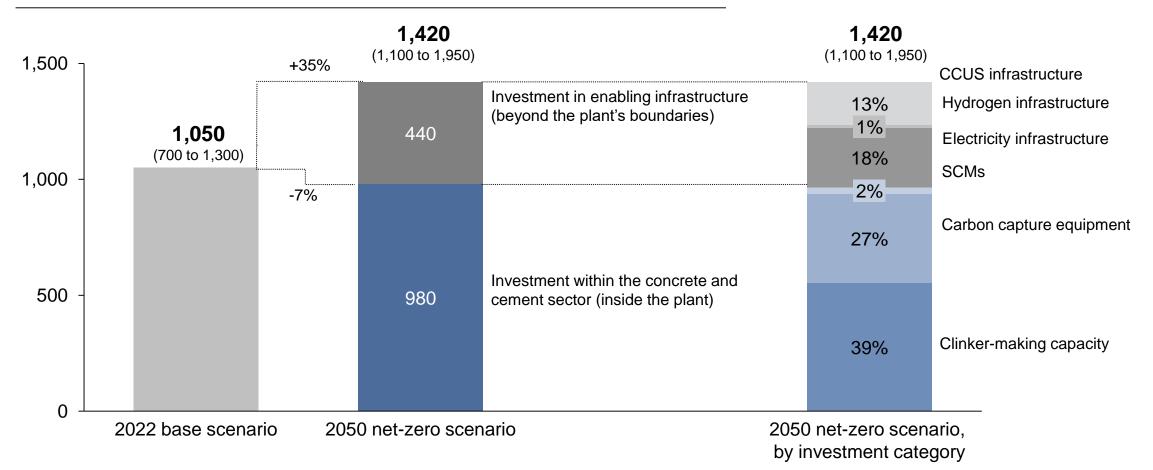
Levers for concrete decarbonization

				Observations
	1 Efficiency in design	2 Efficiency in concrete	3 Recarbonation	 Efficiency strategies in de and construction and be a significant
Concrete decarbonization lever	 Optimizing use of concrete in construction using material-efficient design and construction (e.g., smart design systems, choice of concrete floor slab geometry, concrete column spacing, optimization of concrete strength) 	 Transitioning from small-project site batching of concrete using bagged cement to industrialized processes offers emissions savings because of the adherence to mix specifications and quality control. 	 Recarbonation is a natural process of CO₂ uptake by concrete. Concrete reabsorbs a significant amount of CO₂ over its lifetime as a permanent CO₂ sink. 12 to 23% of process emissions released during cement production can be absorbed. 	 can be a signific lever to reduce overall consump of cement. Optimization of concrete production of through a transit industrialized production can reduce demand cement. Decarbonation improved management of of-life materials of offer additional mitigation opportunities for circular concrete
Pathway to decarbonization	 CO₂ emissions would need to become a design parameter for construction projects Can be applied with current standards and regulations 	 Transition to industrialized production has been implemented in some countries. Use of admixtures improved processing of aggregates. 	 Would need to facilitate access to concrete demolition waste to enable the industry to maximize CO₂ uptake. 	
% contribution to achieve net zero in 2050 (GCCA)	22%	11%	6% (recarbonation only)	
CO ₂ emissions savings in 2050 (GCCA), 3,830 metric tonnes (total)	840 Mt CO ₂	430 Mt CO ₂	242 Mt CO ₂ (decarbonation only)	

Optimization of concrete production through a transition to

Decarbonation and

management of endof-life materials could offer additional mitigation opportunities for circular concrete.


industrialized production can reduce demand for

👍 Columbia Business School

strategies in design and construction can be a significant lever to reduce overall consumption

Delivering a net-zero scenario requires a 35% investment increase against base case

Cumulative investments, 2022-50, Billions of dollars, midpoint

